Skip to main content
Log in

Stationary nonlinear waves, superposition modes and modulational instability characteristics in the AB system

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

We study the AB system describing marginally unstable baroclinic wave packets in geophysical fluids and also ultrashort pulses in nonlinear optics. We show that the breather can be converted into different types of stationary nonlinear waves on constant backgrounds, including the multi-peak soliton, M-shaped soliton, W-shaped soliton and periodic wave. We also investigate the nonlinear interactions between these waves, which display some novel patterns due to the nonpropagating characteristics of the solitons: (1) Two antidark solitons can produce a W-shaped soliton instead of a higher-order antidark one; (2) the interaction between an antidark soliton and a W-shaped soliton can not only generate a higher-order antidark soliton, but also form a W-shaped soliton pair; and (3) the interactions between an oscillation W-shaped soliton and an oscillation M-shaped soliton show the multi-peak structures. We find that the transition occurs at a modulational stability region in a low perturbation frequency region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Chabchoub, A., Hoffmann, N.P., Akhmediev, N.: Rogue wave observation in a water wave tank. Phys. Rev. Lett. 106, 204502 (2011)

    Article  Google Scholar 

  2. Chabchoub, A., Hoffmann, N., Onorato, M., Akhmediev, N.: Super rogue waves: observation of a higher-order breather in water waves. Phys. Rev. X 2, 011015 (2012)

    Google Scholar 

  3. Shats, M., Punzmann, H., Xia, H.: Capillary rogue waves. Phys. Rev. Lett. 104, 104503 (2010)

    Article  Google Scholar 

  4. Xia, H., Maimbourg, T., Punzmann, H., Shats, M.: Oscillon dynamics and rogue wave generation in Faraday surface ripples. Phys. Rev. Lett. 109, 114502 (2012)

    Article  Google Scholar 

  5. Bailung, H., Sharma, S.K., Nakamura, Y.: Observation of Peregrine solitons in a multicomponent plasma with negative ions. Phys. Rev. Lett. 107, 255005 (2011)

    Article  Google Scholar 

  6. Kibler, B., Fatome, J., Finot, C., Millot, G., Dias, F., Genty, G., Akhmediev, N., Dudley, J.M.: The Peregrine soliton in nonlinear fibre optics. Nat. Phys. 6, 790 (2010)

    Article  Google Scholar 

  7. Bludov, Y.V., Konotop, V.V., Akhmediev, N.: Matter rogue waves. Phys. Rev. A 80, 033610 (2009)

    Article  Google Scholar 

  8. Perkins, S.: Dashing rogues: Freak ocean waves pose threat to ships, deep-sea oil platforms. Sci. News 170, 328 (2006)

    Article  Google Scholar 

  9. Pelinovsky, E., Kharif, C.: Extreme Ocean Waves. Springer, Berlin (2008)

    Book  MATH  Google Scholar 

  10. Akhmediev, N., Ankiewicz, A., Taki, M.: Waves that appear from nowhere and disappear without a trace. Phys. Lett. A 373, 675 (2009)

    Article  MATH  Google Scholar 

  11. Akhmediev, N., Ankiewicz, A., SotoCrespo, J.M.: Rogue waves and rational solutions of the nonlinear Schrödinger equation. Phys. Rev. E 80, 026601 (2009)

    Article  Google Scholar 

  12. Kharif, C., Pelinovsky, E., Slunyaev, A.: Rogue Waves in the Ocean. Springer, Berlin (2009)

    MATH  Google Scholar 

  13. Onorato, M., Residori, S., Bortolozzo, U., Montina, A., Arecchi, F.T.: Rogue waves and their generating mechanisms in different physical contexts. Phys. Rep. 528, 47 (2013)

    Article  MathSciNet  Google Scholar 

  14. Craik, A.D.D.: Wave Interactions and Fluid Flows. Cambridge University Press, Cambridge (1985)

    MATH  Google Scholar 

  15. Kivshar, Y.S., Agrawal, G.: Optical Solitons: From Fibers to Photonic Crystals. Academic Press, Cambridge (2003)

    Google Scholar 

  16. Peregrine, D.H.: Water waves, nonlinear Schrödinger equations and their solutions. J. Aust. Math. Soc. Ser. B Appl. Math. 25, 16 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  17. Shrira, V.I., Geogjaev, V.V.: What makes the Peregrine soliton so special as a prototype of freak waves? J. Eng. Math. 67, 11 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  18. Efimov, V.B., Ganshin, A.N., Kolmakov, G.V., McClintock, P.V.E., Mezhov-Deglin, L.P.: Rogue waves in superfluid helium. Eur. Phys. J. Spec. Top. 185, 181 (2010)

    Article  MATH  Google Scholar 

  19. Osborne, A.R.: Nonlinear Ocean Waves and the Inverse Scattering Transform. Elsevier, Amsterdam (2010)

    MATH  Google Scholar 

  20. Voronovich, V.V., Shrira, V.I., Thomas, G.: Can bottom friction suppress ’freak wave’ formation? J. Fluid Mech. 604, 263 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  21. Kedziora, D.J., Ankiewicz, A., Akhmediev, N.: Second-order nonlinear Schrödinger equation breather solutions in the degenerate and rogue wave limits. Phys. Rev. E 85, 066601 (2012)

    Article  Google Scholar 

  22. Ma, Y.C.: The perturbed plane-wave solutions of the cubic Schrödinger equation. Stud. Appl. Math. 60, 43 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  23. Akhmediev, N.N., Korneev, V.I.: Modulation instability and periodic solutions of the nonlinear Schrödinger equation. Theor. Math. Phys. 69, 1089 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  24. Zakharov, V.E., Ostrovsky, L.A.: Modulation instability: the beginning. Phys. D 238, 540 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  25. Ruderman, M.S.: Freak waves in laboratory and space plasmas. Eur. Phys. J. Spec. Top. 185, 57 (2010)

    Article  Google Scholar 

  26. Slunyaev, A.: Freak wave events and the wave phase coherence. Eur. Phys. J. Spec. Top. 185, 67 (2010)

    Article  Google Scholar 

  27. Kharif, C., Touboul, J.: Under which conditions the Benjamin–Feir instability may spawn an extreme wave event: a fully nonlinear approach. Eur. Phys. J. Spec. Top. 185, 159 (2010)

    Article  Google Scholar 

  28. Chen, S.H., Baronio, F., Soto-Crespo, J.M., Grelu, P., Conforti, M., Wabnitz, S.: Optical rogue waves in parametric three-wave mixing and coherent stimulated scattering. Phys. Rev. A 92, 033847 (2015)

    Article  Google Scholar 

  29. Baronio, F., Chen, S.H., Grelu, P., Wabnitz, S., Conforti, M.: Baseband modulation instability as the origin of rogue waves. Phys. Rev. A 91, 033804 (2014)

    Article  Google Scholar 

  30. Wang, L., Wang, Z.Z., Jiang, D.Y., Qi, F.H., Guo, R.: Semirational solutions and baseband modulational instability of the AB system in fluid mechanics. Eur. Phys. J. Plus 130, 199 (2015)

  31. Zhang, Y., Li, C.Z., He, J.S.: Rogue waves in a resonant erbium-doped fiber system with higher-order effects. Appl. Math. Comput. 273, 826 (2016)

    MathSciNet  Google Scholar 

  32. Chowdury, A., Kedziora, D.J., Ankiewicz, A., Akhmediev, N.: Breather-to-soliton conversions described by the quintic equation of the nonlinear Schrödinger hierarchy. Phys. Rev. E 91, 032928 (2015)

    Article  MathSciNet  Google Scholar 

  33. Chowdury, A., Ankiewicz, A., Akhmediev, N.: Moving breathers and breather-to-soliton conversions for the Hirota equation. Proc. R. Soc. A 471, 20150130 (2015)

    Article  MathSciNet  Google Scholar 

  34. He, J.S., Xu, S.W., Ruderman, M.S., Erdélyi, R.: State transition induced by self-steepening and self phase-modulation. Chin. Phys. Lett. 31, 010502 (2014)

    Article  Google Scholar 

  35. Ren, Y., Yang, Z.Y., Liu, C., Yang, W.L.: Different types of nonlinear localized and periodic waves in an erbium-doped fiber system. Phys. Lett. A 379, 2991 (2015)

    Article  Google Scholar 

  36. Liu, C., Yang, Z.Y., Zhao, L.C., Yang, W.L.: State transition induced by higher-order effects and background frequency. Phys. Rev. E 91, 022904 (2015)

    Article  Google Scholar 

  37. Liu, C., Yang, Z.Y., Zhao, L.C., Yang, W.L.: Transition, coexistence, and interaction of vector localized waves arising from higher-order effects. Ann. Phys. 362, 130 (2015)

    Article  MathSciNet  Google Scholar 

  38. Dodd, R.K., Eilkck, J.C., Gibbon, J.D., Moms, H.C.: Solitons and Nonlinear Wave Equations. Academic Press, New York (1982)

    Google Scholar 

  39. Kamchatnov, A.M., Pavlov, M.V.: Periodic solutions and Whitham equations for the AB system. J. Phys. A Math. Gen. 28, 3279 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  40. Wu, C.F., Grimshaw, R.H.J., Chow, K.W.: A coupled AB system: Rogue waves and modulation instabilities. Chaos 25, 103113 (2015)

    Article  MathSciNet  Google Scholar 

  41. Guo, R., Hao, H.Q., Zhang, L.L.: Dynamic behaviors of the breather solutions for the AB system in fluid mechanics. Nonlinear Dyn. 74, 701 (2013)

    Article  MathSciNet  Google Scholar 

  42. Tan, B., Boyd, J.P.: Envelope solitary waves and periodic waves in the AB equations. Stud. Appl. Math. 109, 67 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  43. Wang, X., Li, Y.Q., Huang, F., Chen, Y.: Rogue wave solutions of AB system. Commun. Nonlinear Sci. Numer. Simul. 20, 434 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  44. Kivshar, Y.S.: Nonlinear dynamics near the zero-dispersion point in optical fibers. Phys. Rev. A 43, 1677 (1991)

    Article  Google Scholar 

  45. Kivshar, Y.S., Afanasjev, V.V.: Dark optical solitons with reverse-sign amplitude. Phys. Rev. A 44, R1446(R) (1991)

    Article  Google Scholar 

Download references

Acknowledgments

We express our sincere thanks to all the members of our discussion group for their valuable comments. This work has been supported by the National Natural Science Foundation of China under Grant (Nos. 11305060 and 61505054), by the Fundamental Research Funds of the Central Universities (Project No. 2015ZD16), by the Innovative Talents Scheme of North China Electric Power University and by the Higher-Level Item Cultivation Project of Beijing Wuzi University (No. GJB20141001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Wang, ZQ., Zhang, JH. et al. Stationary nonlinear waves, superposition modes and modulational instability characteristics in the AB system. Nonlinear Dyn 86, 185–196 (2016). https://doi.org/10.1007/s11071-016-2881-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-016-2881-3

Keywords

Navigation