Skip to main content
Log in

Master–slave model-based parallel chaos optimization algorithm for parameter identification problems

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The parameter identification problem can be formalized as a multi-dimensional optimization problem, where an objective function is established minimizing the error between the estimated and measured data. In this article, a master–slave model (MSM)-based parallel chaos optimization algorithm (PCOA) (denoted as MSM-PCOA) is proposed for parameter identification problems. The MSM-PCOA is a novel global optimization algorithm, where twice carrier wave chaos search is employed as the master model, while the migration and crossover operation are used as the slave model. The MSM-PCOA is applied to the parameter identification of two different complex systems: bidirectional inductive power transfer system and chaotic systems. Simulation results, compared with other optimization algorithms, show that MSM-PCOA has better parameter identification performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Quaranta, G., Monti, G., Marano, G.C.: Parameters identification of Van der Pol–Duffing oscillators via particle swarm optimization and differential evolution. Mech. Syst. Signal Process. 24(7), 2076–2095 (2010)

    Article  Google Scholar 

  2. Tavakolpour, A.R., Darus, I.Z.M., Tokhi, O., Mailah, M.: Genetic algorithm-based identification of transfer function parameters for a rectangular flexible plate system. Eng. Appl. Artif. Intell. 23(8), 1388–1397 (2010)

    Article  Google Scholar 

  3. He, Q., Wang, L., Liu, B.: Parameter estimation for chaotic systems by particle swarm optimization. Chaos Solitons Fractals 34(2), 654–661 (2007)

    Article  MATH  Google Scholar 

  4. Modares, H., Alfi, A., Fateh, M.M.: Parameter identification of chaotic dynamic systems through an improved particle swarm optimization. Expert Syst. Appl. 37(5), 3714–3720 (2010)

    Article  Google Scholar 

  5. Yuan, L.G., Yang, Q.G., Zeng, C.B.: Chaos detection and parameter identification in fractional-order chaotic systems with delay. Nonlinear Dyn. 73(1–2), 439–448 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  6. Ho, W.H., Chou, J.H., Guo, C.Y.: Parameter identification of chaotic systems using improved differential evolution algorithm. Nonlinear Dyn. 61(1–2), 29–41 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  7. Lin, J., Chen, C.: Parameter estimation of chaotic systems by an oppositional seeker optimization algorithm. Nonlinear Dyn. 76(1), 509–517 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  8. Zhu, Q., Yuan, X.F., Wang, H.: An improved chaos optimization algorithm-based parameter identification of synchronous generator. Electr. Eng. 94(3), 147–153 (2012)

    Article  Google Scholar 

  9. Yuan, X.F., Li, S.T., Wang, Y.N., Sun, W., Wu, L.H.: Parameter identification of electronic throttle using a hybrid optimization algorithm. Nonlinear Dyn. 63(4), 549–557 (2011)

    Article  Google Scholar 

  10. Ahn, C.K.: \(L_{2}\)\(L_{\infty }\) nonlinear system identification via recurrent neural networks. Nonlinear Dyn. 62(3), 543–552 (2010)

    Article  MATH  Google Scholar 

  11. Ahn, C.K.: Takagi–Sugeno fuzzy Hopfield neural networks for \(H_{\infty }\) nonlinear system identification. Neural Process. Lett. 34(1), 59–70 (2011)

    Article  Google Scholar 

  12. Kerschen, G., Worden, K., Vakakis, A.F., Golinval, J.C.: Past, present and future of nonlinear system identification in structural dynamics. Mech. Syst. Signal Process. 20(3), 505–592 (2006)

    Article  Google Scholar 

  13. Yang, D.X., Li, G., Cheng, G.D.: On the efficiency of chaos optimization algorithms for global optimization. Chaos Solitons Fractals 34(4), 1366–1375 (2007)

    Article  Google Scholar 

  14. Yuan, X.F., Wang, Y.N.: Parameter selection of support vector machine for function approximation based on chaos optimization. J. Syst. Eng. Electron. 19(1), 191–197 (2008)

  15. Tavazoei, M.S., Haeri, M.: Comparison of different one-dimensional maps as chaotic search pattern in chaos optimization algorithms. Appl. Math. Comput. 187(2), 1076–1085 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  16. Hamaizia, T., Lozi, R., Hamri, N.E.: Fast chaotic optimization algorithm based on locally averaged strategy and multifold chaotic attractor. Appl. Math. Comput. 219(1), 188–196 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  17. Okamoto, T., Hirata, H.: Global optimization using a multipoint type quasi-chaotic optimization method. Appl. Soft Comput. 13(2), 1247–1264 (2013)

    Article  Google Scholar 

  18. Yang, D.X., Liu, Z.J., Zhou, J.L.: Chaos optimization algorithms based on chaotic maps with different probability distribution and search speed for global optimization. Commun. Nonlinear Sci. Numer. Simul. 19(4), 1229–1246 (2014)

    Article  MathSciNet  Google Scholar 

  19. Yang, Y.M., Wang, Y.N., Yuan, X.F., Yin, F.: Hybrid chaos optimization algorithm with artificial emotion. Appl. Math. Comput. 218(11), 6585–6611 (2012)

    Article  MATH  Google Scholar 

  20. Yuan, X.F., Yang, Y.M., Wang, H.: Improved parallel chaos optimization algorithm. Appl. Math. Comput. 219(8), 3590–3599 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  21. Yuan, X.F., Zhao, J.Y., Yang, Y.M., Wang, Y.N.: Hybrid parallel chaos optimization algorithm with harmony search algorithm. Appl. Soft Comput. 17, 12–22 (2014)

    Article  Google Scholar 

  22. Dehuri, S., Ghosh, A., Mall, R.: Parallel multi-objective genetic algorithm for classification rule mining. IETE J Res. 53(5), 475–483 (2007)

    Article  Google Scholar 

  23. Asouti, V.G., Giannakoglou, K.C.: Aerodynamic optimization using a parallel asynchronous evolutionary algorithm controlled by strongly interacting demes. Eng. Optim. 41(3), 241–257 (2009)

    Article  MathSciNet  Google Scholar 

  24. Parsopoulos, K.E.: Parallel cooperative micro-particle swarm optimization: a master-slave model. Appl. Soft Comput. 12(11), 3552–3579 (2012)

    Article  Google Scholar 

  25. Farmahini-Farahani, A., Vakili, S., Fakhraie, S.M., Safari, S., Lucas, C.: Parallel scalable hardware implementation of asynchronous discrete particle swarm optimization. Eng. Appl. Artif. Intell. 23(2), 177–187 (2010)

    Article  Google Scholar 

  26. Baykasoglu, A.: Design optimization with chaos embedded great deluge algorithm. Appl. Soft Comput. 12(3), 1055–1067 (2012)

    Article  Google Scholar 

  27. Hung, Y.F., Chen, W.C.: A heterogeneous cooperative parallel search of branch-and-bound method and tabu search algorithm. J. Global Optim. 51(1), 133–148 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  28. Madawala, U.K., Thrimawithana, D.J.: A bidirectional inductive power interface for electric vehicles in V2G systems. IEEE Trans. Ind. Electron. 58(10), 4789–4796 (2011)

    Article  Google Scholar 

  29. Swain, A.K., Neath, M.J., Madawala, U.K., Thrimawithana, D.J.: A dynamic multivariable state-space model for bidirectional inductive power transfer systems. IEEE Trans. Power Electron. 27(1), 4772–4780 (2012)

    Article  Google Scholar 

  30. Yuan, X.F., Xiang, Y.Z., Wang, Y., Yan, X.G.: Parameter identification of bidirectional IPT system using chaotic asexual reproduction optimization. Nonlinear Dyn. 78(3), 2113–2127 (2014)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the National Natural Science Foundation of China (No. 61573133, No. 61203309) and Hunan Provincial Natural Science Foundation of China (No. 2015JJ3053).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaofang Yuan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, X., Zhang, T., Dai, X. et al. Master–slave model-based parallel chaos optimization algorithm for parameter identification problems. Nonlinear Dyn 83, 1727–1741 (2016). https://doi.org/10.1007/s11071-015-2443-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-015-2443-0

Keywords

Navigation