Skip to main content
Log in

An incremental Hammerstein-like modeling approach for the decoupled creep, vibration and hysteresis dynamics of piezoelectric actuator

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The modeling of the piezoelectric actuator is very important for the fast and accurate nano-positioning control. However, the complex creep, vibration and hysteresis dynamics make the modeling very difficult. Because there are often model uncertainties in the first-principle model, the model identification from the experimental data is very necessary. Most identification approaches only consider partial dynamics of the creep, vibration and hysteresis. Though they can be combined together after they are individually identified from different experiments, it is difficult to design the completely decoupled experiment. In this study, an incremental Hammerstein-like modeling approach is proposed to identify the creep, vibration and hysteresis dynamics from one experiment. The model is called nonlinear–linear–linear-Hammerstein-like model, where one dynamic nonlinear system is used to model the hysteresis and two dynamic linear systems are used to model the creep and vibration. The creep and vibration are assumed to be decoupled, and there is a known upper bound on the order of the creep model. A two-stage incremental modeling approach is proposed to reduce the modeling complexity, where the slow dynamics of the hysteresis and creep are estimated first and then the residual of this model is used to estimate the fast dynamics of the vibration. In each stage, the model structure and order are determined by a locally regularized orthogonal least-squares-based model term selection algorithm and the parameters are estimated using a regularized least-squares method. The effectiveness of the proposed modeling approach is verified by the simulations and experiments on typical piezoelectric actuators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32

Similar content being viewed by others

References

  1. Peng, J.Y., Chen, X.B.: A survey of modeling and control of piezoelectric actuators. Mod. Mech. Eng. 3, 1–20 (2013)

    Article  MathSciNet  Google Scholar 

  2. Rakotondrabe, M., Clévy, C., Lutz, P.: Complete open loop control of hysteretic, creeped, and oscillating piezoelectric cantilevers. IEEE Trans. Autom. Sci. Eng. 7(3), 440–450 (2010)

    Article  Google Scholar 

  3. Peng, J.Y., Chen, X.B.: Integrated PID-based sliding mode state estimation and control for piezoelectric actuators. IEEE/ASME Trans. Mechatron. 19(1), 88–99 (2014)

    Article  Google Scholar 

  4. Liaw, H.C., Shirinzadeh, B., Smith, J.: Robust neural network motion tracking control of piezoelectric actuation systems for micro/nanomanipulation. IEEE Trans. Neural Netw. 20(2), 356–367 (2009)

    Article  Google Scholar 

  5. Islam, M.N., Seethaler, R.J.: Sensorless position control for piezoelectric actuators using a hybrid position observer. IEEE/ASME Trans. Mechatron. 19(2), 667–675 (2014)

    Article  Google Scholar 

  6. Devasia, S., Eleftheriou, E., Moheimani, S.O.R.: A survey of control issues in nanopositioning. IEEE Trans. Control Syst. Technol. 15(5), 802–823 (2007)

    Article  Google Scholar 

  7. Adriaens, H.J.M.T.A., de Koning, W.L., Banning, R.: Modeling piezoelectric actuators. IEEE/ASME Trans. Mechatron. 5(4), 331–341 (2000)

    Article  Google Scholar 

  8. Chen, C.J.: Electromechanical deflections of piezoelectric tubes with quartered electrodes. Appl. Phys. Lett. 60(1), 132–134 (1992)

    Article  Google Scholar 

  9. Sebastian, A., Salapaka, S.M.: Design methodologies for robust nano-positioning. IEEE Trans. Control Syst. Technol. 13(6), 868–876 (2005)

    Article  Google Scholar 

  10. Yong, Y.K., Aphale, S.S., Moheimani, S.O.R.: Design, identification, and control of a flexure-based XY stage for fast nanoscale positioning. IEEE Trans. Nanotechnol. 8(1), 46–54 (2009)

    Article  Google Scholar 

  11. Schitter, G., Stemmer, A.: Identification and open-loop tracking control of a piezoelectric tube, scanner for high-speed scanning-probe microscopy. IEEE Trans. Control Syst. Technol. 12(3), 449–454 (2004)

    Article  Google Scholar 

  12. Schitter, G., Astrom, K.J., DeMartini, B.E., et al.: Design and modeling of a high-speed AFM-scanner. IEEE Trans. Control Syst. Technol. 15(5), 906–915 (2007)

    Article  Google Scholar 

  13. Ji, H.-W., Yang, S.-X., Wu, Z.-T., Yan, G.-B.: Precision control of piezoelectric actuator using support vector regression nonlinear model and neural networks. In: Proceedings of the Fourth International Conference on Machine Learning and Cybernetics, Guangzhou, China, pp. 1186–1191 (2005)

  14. Croft, D., Shed, G., Devasia, S.: Creep, hysteresis, and vibration compensation for piezoactuators: Atomic force microscopy application. J. Dyn. Syst. Meas. Control Trans. ASME 123(1), 35–43 (2001)

    Article  Google Scholar 

  15. Jung, H., Shim, J.Y., Gweon, D.: Tracking control of piezoelectric actuators. Nanotechnology 12, 14–20 (2001)

    Article  Google Scholar 

  16. Liu, Y.F., Shan, J.J., Gabbert, U., Qi, N.M.: Hysteresis and creep modeling and compensation for a piezoelectric actuator using a fractional-order Maxwell resistive capacitor approach. Smart Mater. Struct. 22, 115020 (2013)

  17. Croft, D., Devasia, S.: Vibration compensation for high speed scanning tunneling microscopy. Rev. Sci. Instrum. 70(12), 4600–4605 (1999)

    Article  Google Scholar 

  18. Croft, D., Devasia, S.: Hysteresis and vibration compensation for piezoactuators. J. Guid. Control Dyn. 21(5), 710–717 (1998)

    Article  Google Scholar 

  19. Ge, P., Jouaneh, M.: Tracking control of a piezoceramic actuator. IEEE Trans. Control Syst. Technol. 4(3), 209–216 (1996)

    Article  Google Scholar 

  20. Mrad, R.B., Hu, H.: A model for voltage to displacement dynamics in piezoceramic actuators subject to dynamic voltage excitations. IEEE/ASME Trans. Mechatron. 7(4), 479–489 (2002)

    Article  Google Scholar 

  21. Bashash, S., Jalili, N.: Underlying memory-dominant nature of hysteresis in piezoelectric materials. J. Appl. Phys. 100(1), 1–6 (2006)

    Article  Google Scholar 

  22. Yeh, T.J., Lu, S.W., Wu, T.Y.: Modeling and identification of hysteresis in piezoelectric actuators. J. Dyn. Syst. Meas. Control Trans. ASME 128, 189–196 (2006)

    Article  Google Scholar 

  23. Janaideh, M.A., Rakheja, S., Su, C.Y.: An analytical generalized Prandtl-Ishlinskii model inversion for hysteresis compensation in micropositioning control. IEEE/ASME Trans. Mechatron. 16(4), 734–744 (2011)

    Article  Google Scholar 

  24. Ji, D.H., Koo, J.H., Yoo, W.J., Park, J.H.: Precise tracking control of piezoelectric actuators based on a hysteresis observer. Nonlinear Dyn. 70, 1969–1976 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  25. Rochdi, Y., Giri, F., Ikhouane, F., Chaoui, F.Z., Rodellar, J.: Parametric identification of nonlinear hysteretic systems. Nonlinear Dyn. 58, 393–404 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  26. Jiang, H., Ji, H., Qiu, J., Chen, Y.: A modified Prandtl-Ishlinskii model for modeling asymmetric hysteresis of piezoelectric actuators. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 57(5), 1200–1210 (2010)

    Article  Google Scholar 

  27. Qin, H., Bu, N., Chen, W., Yin, Z.: An asymmetric hysteresis model and parameter identification method for piezoelectric actuator. Math. Probl. Eng. 2014 (2014). doi:10.1155/2014/932974

  28. Ku, S.S., Pinsopon, U., Cetinkunt, S., Nakajima, S.: Design, fabrication, and real-time neural network control of a three-degrees-of freedom nanopositioner. IEEE/ASME Trans. Mechatron. 5(3), 273–280 (2000)

    Article  Google Scholar 

  29. Jiles, D., Thoelke, J.: Theory of ferromagnetic hysteresis determination of model parameters from experimental hysteresis loops. IEEE Trans. Magn. 25(5), 3928–3930 (1989)

    Article  Google Scholar 

  30. Dirscherl, K., Garnæs, J., Nielsen, L.: Modeling the hysteresis of a scanning probe microscope. J. Vac. Sci. Technol. B 18(2), 621–625 (2000)

    Article  Google Scholar 

  31. Ang, W.T., Khosla, P.K., Riviere, C.N.: Feedforward controller with inverse rate-dependent model for piezoelectric actuators in trajectory-tracking applications. IEEE/ASME Trans. Mechatron. 12(2), 134–142 (2007)

    Article  Google Scholar 

  32. Xiao, S., Li, Y.: Dynamic compensation and H\(\infty \) control for piezoelectric actuators based on the inverse Bouc–Wen model. Robot. Comput. Integr. Manuf. 30, 47–54 (2014)

    Article  MathSciNet  Google Scholar 

  33. Deng, L., Tan, Y.: Diagonal recurrent neural network with modified backlash operators for modeling of rate-dependent hysteresis in piezoelectric actuators. Sens. Actuators A Phys. 148(1), 259–270 (2008)

    Article  Google Scholar 

  34. Zhang, X., Tan, Y.: A hybrid model for rate-dependent hysteresis in piezoelectric actuators. Sens. Actuators A Phys. 157, 54–60 (2010)

    Article  Google Scholar 

  35. Xu, Q., Wong, P.K.: Hysteresis modeling and compensation of a piezostage using least squares support vector machines. Mechatronics 21(7), 1239–1251 (2011)

    Article  Google Scholar 

  36. Li, P.Z., Yan, F., Ge, C., Wang, X.L., Xu, L.S., Guo, J.J., Li, P.Y.: A simple fuzzy system for modelling of both rate-independent and rate-dependent hysteresis in piezoelectric actuators. Mech. Syst. Signal Process. 36, 182–192 (2013)

    Article  Google Scholar 

  37. Gu, G., Zhu, L.: Modeling of rate-dependent hysteresis in piezoelectric actuators using a family of ellipses. Sens. Actuators A Phys. 165, 303–309 (2011)

    Article  Google Scholar 

  38. Stoica, P., Söderström, T.: Instrumental-variable methods for identification of Hammerstein systems. Int. J. Control 35(3), 459–476 (1982)

    Article  MATH  Google Scholar 

  39. Bai, E.W., Li, D.: Convergence of the iterative Hammerstein system identification algorithm. IEEE Trans. Autom. Control 49(11), 1929–1940 (2004)

    Article  MathSciNet  Google Scholar 

  40. Hsu, J.T., Ngo, K.D.T.: A Hammerstein-based dynamic model for hysteresis phenomenon. IEEE Trans. Power Electron. 12(3), 406–413 (1997)

    Article  Google Scholar 

  41. Hsu, J.T., Ngo, K.D.T.: Subcircuit modeling of magnetic cores with hysteresis in pspice. IEEE Trans. Aerosp. Electron. Syst. 38(4), 1425–1434 (2002)

    Article  Google Scholar 

  42. Wang, Z., Zhang, Z., Mao, J., Zhou, K.: A Hammerstein-based model for rate-dependent hysteresis in piezoelectric actuator. In: 2012 24th Chinese Control and Decision Conference (CCDC), Taiyuan, China, 23–25 May, 2012

  43. Mokaberi, B., Requicha, A.A.G.: Compensation of scanner creep and hysteresis for AFM nanomanipulation. IEEE Trans. Autom. Sci. Eng. 5(2), 197–206 (2008)

    Article  Google Scholar 

  44. Wu, Y., Zou, Q. Z.: Iterative control approach to compensate for the hysteresis and the vibrational dynamics effects of piezo actuators. In: Proceedings of the 2006 American Control Conference, Minneapolis, Minnesota, USA, June 14–16, 2006, pp. 424–429

  45. Liu, L., Tan, K.K., Teo, C.S., Chen, S.L., Lee, T.H.: Development of an approach towards comprehensive identification of hysteretic dynamics in piezoelectric actuators. IEEE Trans. Control Syst. Technol. 21(5), 1–12 (2013)

  46. Leang, K.K., Zou, Q., Devasia, S.: Feedforward control of piezoactuators in atomic force microscope systems. IEEE Control Syst. Mag. 29(1), 70–82 (2009)

    Article  MathSciNet  Google Scholar 

  47. Giri, F., Rochdi, Y., Chaoui, F.Z., Brouri, A.: Identification of Hammerstein systems in presence of hysteresis-backlash and hysteresis-relay nonlinearities. Automatica 44(3), 767–775 (2008)

  48. Qi, C.K., Li, H.-X.: A time/space separation based Hammerstein modeling approach for nonlinear distributed parameter processes. Comput. Chem. Eng. 33(7), 1247–1260 (2009)

    Article  Google Scholar 

  49. Qi, C.K., Li, H.-X., Zhao, X.C., Li, S.Y., Gao, F.: Hammerstein modeling with structure identification for multi-input multi-output nonlinear industrial processes. Ind. Eng. Chem. Res. 50(19), 11153–11169 (2011)

    Article  Google Scholar 

  50. Chen, S.: Local regularization assisted orthogonal least squares regression. Neurocomputing 69, 559–585 (2006)

    Article  Google Scholar 

  51. MacKay, D.J.C.: Bayesian interpolation. Neural Comput. 4(3), 415–447 (1992)

    Article  Google Scholar 

  52. Hong, X., Harris, C.J., Chen, S., Sharkey, P.M.: Robust nonlinear model identification methods using forward regression. IEEE Trans. Syst. Man Cybern. Part A Syst. Hum. 33(4), 514–523 (2003)

    Article  Google Scholar 

  53. Ljung, L.: System Identification: Theory for the User, 2nd edn. Prentice-Hall, Englewood Cliffs (1999)

    Google Scholar 

  54. Hong, X., Mitchell, R.J., Chen, S., Harris, C.J., Li, K., Irwin, G.W.: Model selection approaches for non-linear system identification: a review. Int. J. Syst. Sci. 39(10), 925–946 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  55. Bai, E.W.: An optimal two-stage identification algorithm for Hammerstein–Wiener nonlinear systems. Automatica 34(3), 333–338 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  56. Gómez, J.C., Baeyens, E.: Identification of block-oriented nonlinear systems using orthonormal bases. J. Process Control 14(6), 685–697 (2004)

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the associate editor and anonymous referees for their valuable comments and suggestions. The work is partially supported by grants from National Basic Research Program 973 of China (Grant Nos. 2013CB035501 and 2013CB035504), National Natural Science Foundation of China (Grant Nos. 61473187, 61004047, 51175323) and Shanghai Natural Science Foundation (Grant No. 14ZR1422600).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chenkun Qi.

Appendix

Appendix

Theorem 1

[56] Let \(\hat{{\Theta }}\in R^{n_{bcs} \times n_{fs} }\) have rank \(\rho \ge 1\), and let the economy-size SVD of \(\hat{{\Theta }}\) be given by

$$\begin{aligned} \hat{{\Theta }}=\mathbf{U}_\rho \varvec{\Sigma }_\rho \mathbf{V}_\rho ^\mathrm{T} =\sum _{i=1}^\rho {\sigma _i \varvec{\mu }_i } \varvec{\upsilon }_i^\mathrm{T} , \end{aligned}$$
(92)

where the singular matrix \(\varvec{\Sigma }_\rho =\hbox {diag}\{\sigma _i \}\) such that

$$\begin{aligned} \sigma _1 \ge \cdots \ge \sigma _\rho >0, \end{aligned}$$

and where the matrices \(\mathbf{U}_\rho =[\varvec{\mu }_1 ,\ldots ,\varvec{\mu }_\rho ]\in R^{n_{bcs} \times \rho }\) and \(\mathbf{V}_\rho =[\varvec{\upsilon }_1 ,\ldots ,\varvec{\upsilon }_\rho ]\in R^{n_{fs} \times \rho }\) contain only the first \(\rho \) columns of the unitary matrices \(\mathbf{U}\in R^{n_{bcs} \times n_{bcs} }\) and \(\mathbf{V}\in R^{n_{fs} \times n_{fs} }\) provided by the full SVD of \(\hat{{\Theta }}\),

$$\begin{aligned} \hat{{\Theta }}=\mathbf{U}{\varvec{\Sigma }}\mathbf{V}^\mathrm{T} , \end{aligned}$$
(93)

respectively. Then the vectors \(\mathbf{b}_{cs} \in R^{n_{bcs} \times 1}\) and \(\varvec{\uptheta }_{fs} \in R^{n_{fs} \times 1}\) that minimize the norm \(||\hat{{\Theta }}-\mathbf{b}_{cs} \varvec{\uptheta }_{fs}^\mathrm{T} ||_F^2 \), are given by [56]

$$\begin{aligned} (\hat{\mathbf{b}}_{cs} ,\hat{{\varvec{\uptheta }}}_{fs} )=\mathop {\arg \;\min }\limits _{\mathbf{b}_{cs} ,\varvec{\uptheta }_{fs} } \{||\hat{{\Theta }}-\mathbf{b}_{cs} \varvec{\uptheta }_{fs}^\mathrm{T} ||_F^2 \}=(\mathbf{U}_1 ,\mathbf{V}_1 {\varvec{\Sigma }}_1 ),\nonumber \\ \end{aligned}$$
(94)

where \(\mathbf{U}_1 \in R^{n_{bcs} \times 1}\), \(\mathbf{V}_1 \in R^{n_{fs} \times 1}\) and \({\varvec{\Sigma }}_1 =\hbox {diag}\{\sigma _1 \}\) are given by the following partition of the economy-size SVD in (92)

$$\begin{aligned} \hat{{\Theta }}=\left[ {{\begin{array}{ll} {\mathbf{U}_1 }&{}\quad {\mathbf{U}_2 } \\ \end{array} }} \right] \left[ {{\begin{array}{ll} {\varvec{\Sigma }_1 }&{}\quad 0 \\ 0&{} {\varvec{\Sigma }_2 } \\ \end{array} }} \right] \left[ {{\begin{array}{l} {\mathbf{V}_1^\mathrm{T} } \\ {\mathbf{V}_2^\mathrm{T} } \\ \end{array} }} \right] , \end{aligned}$$
(95)

and the approximation error is given by

$$\begin{aligned} ||\hat{{\Theta }}-\hat{\mathbf{b}}_{cs} \hat{{\varvec{\uptheta }}}_{fs}^\mathrm{T} ||_F^2 =\sum _{i=2}^\rho {\sigma _i^2 }. \end{aligned}$$
(96)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qi, C., Gao, F., Li, HX. et al. An incremental Hammerstein-like modeling approach for the decoupled creep, vibration and hysteresis dynamics of piezoelectric actuator. Nonlinear Dyn 82, 2097–2118 (2015). https://doi.org/10.1007/s11071-015-2302-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-015-2302-z

Keywords

Navigation