Skip to main content
Log in

Nonlinear oscillations of a dielectric elastomer membrane subjected to in-plane stretching

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

An analytical model is proposed for the dynamic behavior analysis of a dielectric elastomer (DE) membrane undergoing in-plane stretching. We employ the neo-Hookean model for describing the hyperelasticity feature of the DE membrane. The DE membrane is assumed to elongate only in length direction. For better understanding the dynamic responses of the DE membrane, both free and forced oscillations of the nonlinear system are analyzed. The results show that the system may display periodic oscillations in its length, no matter the DE membrane is constrained by linear or nonlinear cubic springs. It is found that quasi-periodic oscillations of the DE membrane fairly occur provided an in-plane harmonic force is applied. In addition, the response frequencies of the system are also addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Suo, Z.G.: Theory of dielectric elastomers. Acta Mech. Solida Sin. 23, 549–578 (2010)

    Article  Google Scholar 

  2. Qu, S.X., Suo, Z.G.: A finite element method for dielectric elastomer transducers. Acta Mech. Solida Sin. 25, 459–466 (2012)

    Article  Google Scholar 

  3. Feng, C., Jiang, L.Y., Lau, W.M.: Dynamic characteristics of a dielectric elastomer-based microbeam resonator with small vibration amplitude. J. Micromech. Microeng. 21, 095002 (2011)

    Article  Google Scholar 

  4. Lin, L., Howe, R.T., Pisano, A.P.: Microelectromechanical filters for signal processing. J. Microelectromech. Syst. 7, 286–294 (1998)

    Article  Google Scholar 

  5. Ekinci, K., Huang, X., Roukes, M.: Ultrasensitive nanoelectromechanical mass detection. Appl. Phys. Lett. 84, 4469–4471 (2009)

    Article  Google Scholar 

  6. Pelrine, R., Eckerle, J., Chiba, S.: Review of artificial muscle approaches. In: Proceedings of 3rd International Symposium on Micro Machine and Human Science, Nagoya, 1–19 October 1992

  7. Carpi, F.: Dielectric Elastomers as Electromechanical Transducers: Fundamentals, Materials, Devices, Models and Applications of an Emerging Electroactive Polymer Technology. Elsevier, Amsterdam (2008)

    Google Scholar 

  8. Bar-Cohen, Y.: Electroactive Polymer (EAP) Actuators as Artificial Muscles: Reality, Potential, and Challenges. SPIE Optical Engineering Press, Bellingham (2004)

    Book  Google Scholar 

  9. Fox, J.W., Goulbourne, N.C.: Electric field-induced surface transformations and experimental dynamic characteristics of dielectric elastomer membranes. J. Mech. Phys. Solids 57, 1417–1435 (2009)

    Article  MATH  Google Scholar 

  10. Heydt, R., Kornbluh, R., Eckerle, J., Pelrine, R.: Sound radiation properties of dielectric elastomer electroactive polymer loudspeakers. In: Proceedings of SPIE 6168, 61681M (2006)

  11. Matysek, M., Lotz, P., Flittner, K., Schlaak, H.F.: Vibrotactile display for mobile applications based on dielectric elastomer stack actuators. In: Proceedings of SPIE 7642, 76420D (2010)

  12. Xu, B.X., Mueller, R., Theis, A., Klassen, M., Cross, D.: Dynamic analysis of dielectric elastomer actuators. Appl. Phys. Lett. 100, 112903 (2012)

    Article  Google Scholar 

  13. McMeeking, R.M., Landis, C.M.: Electrostatic forces and stored energy for deformable dielectric materials. J. Appl. Mech. 72, 581–590 (2005)

    Article  MATH  Google Scholar 

  14. Suo, Z., Zhao, X., Greene, W.H.: A nonlinear field theory of deformable dielectrics. J. Mech. Phys. Solids 56, 467–486 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  15. Brochu, P., Pei, Q.: Advances in dielectric elastomers for actuators and artificial muscles. Macromol. Rapid Commun. 31, 10–36 (2010)

    Article  Google Scholar 

  16. Dubois, P., Rosset, S., Niklaus, M., Dadras, M., Shea, H.: Voltage control of the resonance frequency of dielectric electroactive polymer (DEAP) membranes. J. Microelectromech. Syst. 17, 1072–1081 (2008)

    Article  Google Scholar 

  17. Hochradel, K., Rupitsch, S., Sutor, A., Lerch, R., Vu, D.K., Steinmann, P.: Dynamic performance of dielectric elastomers utilized as acoustic actuators. Appl. Phys. A 107, 531–538 (2012)

    Article  Google Scholar 

  18. Zhu, J., Cai, S., Suo, Z.: Nonlinear oscillation of a dielectric elastomer balloon. Polym. Int. 59, 378–383 (2010)

    Article  Google Scholar 

  19. Zhu, J., Cai, S., Suo, Z.: Resonant behavior of a membrane of a dielectric elastomer. Int. J. Solids Struct. 47, 3254–3262 (2010)

    Article  MATH  Google Scholar 

  20. Yong, H., He, X., Zhou, Y.: Dynamics of a thick-walled dielectric elastomer spherical shell. Int. J. Eng. Sci. 49, 792–800 (2011)

    Article  Google Scholar 

  21. Li, T., Qu, S., Yang, W.: Electromechanical and dynamic analyses of tunable dielectric elastomer resonator. Int. J. Solids Struct. 49, 3754–3761 (2012)

    Article  Google Scholar 

  22. Soares, R.M., Goncalves, P.B.: Nonlinear vibrations and instabilities of a stretched hyperelastic annular membrane. Int. J. Solids Struct. 49, 514–526 (2010)

    Article  Google Scholar 

  23. Sheng, J.J., Chen, H.L., Liu, L., Zhang, J.S., Wang, Y.Q., Jia, S.H.: Dynamic electromechanical performance of viscoelastic dielectric elastomers. J. Appl. Phys. 114, 134101 (2013)

    Article  Google Scholar 

  24. Li, B., Zhang, J.S., Liu, L., Chen, L., Jia, S.H., Li, D.C.: Modeling of dielectric elastomer as electromechanical resonator. J. Appl. Phys. 116, 124509 (2014)

    Article  Google Scholar 

  25. Sheng, J.J., Chen, H.L., Li, B., Wang, Y.Q.: Nonlinear dynamic characteristics of a dielectric elastomer membrane undergoing in-plane deformation. Smart Mater. Struct. 23, 045010 (2014)

    Article  Google Scholar 

  26. Zhou, J.Y., Jiang, L.Y., Khayat, R.E.: Viscoelastic effects on frequency tuning of a dielectric elastomer membrane resonator. J. Appl. Phys. 115, 124106 (2014)

    Article  Google Scholar 

  27. Zhang, J.S., Tang, L.L., Li, B., Wang, Y.J., Chen, H.L.: Modeling of the dynamic characteristic of viscoelastic dielectric elastomer actuators subject to different conditions of mechanical load. J. Appl. Phys. 117, 084902 (2015)

    Article  Google Scholar 

  28. Zhu, J.: Instability in nonlinear oscillation of dielectric elastomers. J. Appl. Mech. 82, 061001 (2015)

    Article  Google Scholar 

  29. Feng, C., Yu, L., Zhang, W.: Dynamic analysis of a dielectric elastomer-based microbeam resonator with large vibration amplitude. Int. J. Non-Linear Mech. 65, 63–68 (2014)

    Article  Google Scholar 

  30. Kaltseis, R., Keplinger, C., Koh, S.J.A., Baumgartner, R., Goh, Y.F., Ng, W.H., Kogler, A., Trols, A., Foo, C.C., Suo, Z.: Natural rubber for sustainable high-power electrical energy generation. RSC Adv. 4, 27905 (2014)

    Article  Google Scholar 

  31. Kollosche, M., Zhu, J., Suo, Z., Kofod, G.: Complex interplay of nonlinear processes in dielectric elastomers. Phys. Rev. E 85, 051801 (2012)

  32. Boyce, M.C., Arruda, E.M.: Constitutive models of rubber elasticity: a review. Rubber Chem. Technol. 73, 504 (2000)

    Article  Google Scholar 

  33. Pelrine, R., Kornbluh, R., Pei, Q., Joseph, J.: High-speed electrically actuated elastomers with strain greater than 100 %. Science 287, 836–839 (2000)

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the support provided by the Natural Science Foundation of Hubei Province (2013CFA130, 2014CFA124).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lin Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, Hl., Wang, L. Nonlinear oscillations of a dielectric elastomer membrane subjected to in-plane stretching. Nonlinear Dyn 82, 1709–1719 (2015). https://doi.org/10.1007/s11071-015-2271-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-015-2271-2

Keywords

Navigation