Skip to main content
Log in

RETRACTED ARTICLE: Chattering-free variable structure controller design via fractional calculus approach and its application

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

This article was retracted on 07 February 2020

This article has been updated

Abstract

The chattering phenomenon in variable structure control (VSC) is always given to attention long time. This paper proposes a novel type of control strategy combining the fractional calculus with second-order sliding mode control called second-order fractional variable structure control for a class of nonlinear systems. A novel adaptation law is assigned for reaching the controller part of the sliding mode control to eliminate the chattering phenomenon in spite of the small and large uncertainties in the system. The applied adaptation law acts like a saturation function technique in a thin boundary layer near the sliding surface so that the stability of the system is guaranteed. The proposed chattering-free VSC displays better tracking performance, higher degree of robustness to parameter variations, and lower control effort need. The simulation utilizing the nonlinear models of inverted pendulum and interconnected twin tank system are examined to verify the effectiveness of the proposed control strategy, and its advantages are shown in the results. Finally, the physical application of the proposed VSC strategy is demonstrated through an instance of a typical hexapod robot.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Change history

  • 07 February 2020

    TheEditor-in-Chief has retracted this article [1] because it overlaps significantly with an

References

  1. Utkin, V.I., Guldner, J., Shijun, M.: Sliding Mode Control in Electro-Mechanical Systems. CRC Press, Boca Raton (1999)

    Google Scholar 

  2. Perruquetti, W., Barbot, J.P.: Sliding Mode Control in Engineering. CRC Press, Boca Raton (2002)

    Google Scholar 

  3. Qin, Z.C., Zhong, S., Sun, J.Q.: Sliding mode control experiments of uncertain dynamical systems with time delay. Commun. Nonlinear Sci. Numer. Simul. 18(12), 3558–3566 (2013)

    MathSciNet  MATH  Google Scholar 

  4. Levant, A.: Higher-order sliding modes, differentiation and output-feedback control. Int. J. Control 76(9–10), 924–941 (2003)

    MathSciNet  MATH  Google Scholar 

  5. Aghababa, M.P.: No-chatter variable structure control for fractional nonlinear complex systems. Nonlinear Dyn. 73(4), 2329–2342 (2013)

    MathSciNet  MATH  Google Scholar 

  6. Aghababa, M.P.: Design of a chatter-free terminal sliding mode controller for nonlinear fractional-order dynamical systems. Int. J. Control86(10), 1744–1756 (2013)

    MathSciNet  MATH  Google Scholar 

  7. Levant, A.: Sliding order and sliding accuracy in sliding mode control. Int. J. Control 58(6), 1247–1263 (1993)

    MathSciNet  MATH  Google Scholar 

  8. Ferrara, A., Rubagotti, M.A.: Sub-optimal second order sliding mode controller for systems with saturating actuators. IEEE Trans. Autom. Control54(5), 1082–1087 (2009)

    MathSciNet  MATH  Google Scholar 

  9. Davila, J., Fridman, L., Levant, A.: Second-order sliding mode observer for mechanical systems. IEEE Trans. Autom. Control 50(11), 1785–1789 (2005)

    MathSciNet  MATH  Google Scholar 

  10. Aghababa, M.P.: Synchronization and stabilization of fractional second-order nonlinear complex systems. Nonlinear Dyn. (2014). doi:10.1007/s11071-014-1411-4

    Article  MathSciNet  MATH  Google Scholar 

  11. Zhou, Y., Soh, Y.C., Shen, J.X.: High-gain observer with higher order sliding mode for state and unknown disturbance estimations. Int. J. Robust Nonlinear Control 24(15), 2136–2151 (2014)

    MathSciNet  MATH  Google Scholar 

  12. Hilfer, R.: Applications of Fractional Calculus in Physics. World Scientific, Singapore (2000)

    MATH  Google Scholar 

  13. Aghababa, M.P.: A Lyapunov-based control scheme for robust stabilization of fractional chaotic systems. Nonlinear Dyn. 78(3), 2129–2140 (2014)

    MathSciNet  MATH  Google Scholar 

  14. Aghababa, M.P.: Design of hierarchical terminal sliding mode control scheme for fractional-order systems. IET Sci. Meas. Technol. 9(1), 122–133 (2015)

    Google Scholar 

  15. Aghababa, M.P.: Control of fractional-order systems using chatter-free sliding mode approach. J. Comput. Nonlinear Dyn. 9(3), 31–37 (2014)

    MathSciNet  Google Scholar 

  16. Aghababa, M.P.: A novel terminal sliding mode controller for a class of non-autonomous fractional-order systems. Nonlinear Dyn. 73(1–2), 679–688 (2013)

    MathSciNet  MATH  Google Scholar 

  17. Charef, A.: Analogue realisation of fractional-order integrator, differentiator and fractional PI\(^{\lambda }\)D\(^{\mu }\) controller. IEE Proc.-Control Theory Appl. 153(6), 714–720 (2006)

    Google Scholar 

  18. Bhat, S.P., Bernstein, D.S.: Finite-time stability of continuous autonomous systems. SIAM J. Control Optim. 38(3), 751–766 (2000)

    MathSciNet  MATH  Google Scholar 

  19. Pisano, A., Caponetto, R.: Special issue on “advances in fractional order control and estimation”. Asian J. Control 15(3), 637–639 (2013)

    MathSciNet  MATH  Google Scholar 

  20. Roohi, M., Aghababa, M.P., Haghighi, A.R.: Switching adaptive controllers to control fractional-order complex systems with unknown structure and input nonlinearities. Complexity (2014). doi:10.1002/cplx.21598

    MathSciNet  Google Scholar 

  21. Aghababa, M.P.: A switching fractional calculus-based controller for normal non-linear dynamical systems. Nonlinear Dyn. 75(3), 577–588 (2014)

    MathSciNet  MATH  Google Scholar 

  22. Yin, C., Zhong, S., Chen, W.: Design of sliding mode controller for a class of fractional-order chaotic systems. Commun. Nonlinear Sci. Numer. Simul.17(1), 356–366 (2012)

  23. Bruzzone, L., Bozzini, G.: PDD\(^{1/2}\) control of purely inertial systems: nondimensional analysis of the ramp response. In: Proceedings of the International Conference Modeling, Identification, and Control. Innsbruck, Austria, February 14–16 (2011)

  24. Gao, Z., Liao, X.: Integral sliding mode control for fractional-order systems with mismatched uncertainties. Nonlinear Dyn. 72(1–2), 27–35 (2013)

    MathSciNet  Google Scholar 

  25. Tavazoei, M.S., Haeri, M.: A note on the stability of fractional order systems. Math. Comput. Simul. 79(5), 1566–1576 (2009)

    MathSciNet  MATH  Google Scholar 

  26. Aghababa, M.P.: Finite-time chaos control and synchronization of fractional-order nonautonomous chaotic (hyperchaotic) systems using fractional nonsingular terminal sliding mode technique. Nonlinear Dyn. 69(1–2), 247–261 (2012)

    MathSciNet  MATH  Google Scholar 

  27. Matouk, A.E., Elsadany, A.A.: Achieving synchronization between the fractional-order hyperchaotic Novel and Chen systems via a new nonlinear control technique. Appl. Math. Lett. 29(6), 30–35 (2014)

    MathSciNet  MATH  Google Scholar 

  28. Aghababa, M.P.: Robust stabilization and synchronization of a class of fractional-order chaotic systems via a novel fractional sliding mode controller. Commun. Nonlinear Sci. Numer. Simul. 17(6), 2670–2681 (2012)

    MathSciNet  MATH  Google Scholar 

  29. Chen, D., Zhang, R., Sprott, J.C., Ma, X.: Synchronization between integer-order chaotic systems and a class of fractional-order chaotic system based on fuzzy sliding mode control. Nonlinear Dyn. 70(2), 1549–1561 (2012)

    MathSciNet  MATH  Google Scholar 

  30. Boulkroune, A., Msaad, M., Farza, M.: State and output feedback fuzzy variable structure controllers for multivariable nonlinear systems subject to input nonlinearities. Int. J. Adv. Manuf. Technol. 71(1–4), 539–556 (2014)

    Google Scholar 

  31. Li, W., Hori, Y.: Vibration suppression using single neuron-based PI fuzzy controller and fractional-order disturbance observer. IEEE Trans. Ind. Electron. 54(1), 117–126 (2007)

    Google Scholar 

  32. Yang, J., Zhu, F.: Synchronization for chaotic systems and chaos-based secure communications via both reduced-order and step-by-step sliding mode observers. Commun. Nonlinear Sci. Numer. Simul. 18(4), 926–937 (2013)

    MathSciNet  MATH  Google Scholar 

  33. Caputo, M.: Linear models of dissipation whose Q is almost frequency independent. Ann. Geophys. 19(4), 383–393 (1966)

    MathSciNet  Google Scholar 

  34. Rashid, K., Zidan, H.: Variable structure controller with prescribed transient response to control the position of the induction motor drives. Int. J. Adv. Manuf. Technol. 39(7–8), 744–754 (2008)

    Google Scholar 

  35. Lazarevic, M.P.: Finite time stability analysis of PD\(^{\alpha }\) fractional control of robotic time-delay systems. Mech. Res. Commun. 33(2), 269–279 (2006)

    MathSciNet  MATH  Google Scholar 

  36. Li, Y., Xu, Q.: Adaptive sliding mode control with perturbation estimation and PID sliding surface for motion tracking of a piezo-driven micromanipulator. IEEE Trans. Control Syst. Technol. 18(4), 798–810 (2010)

    Google Scholar 

  37. Wu, L., Ho, D.W.C.: Sliding mode control of singular stochastic hybrid systems. Automatica 46(4), 779–783 (2010)

    MathSciNet  MATH  Google Scholar 

  38. Young, K.D., Utkin, V.I., Ozguner, U.: A control engineer’s guide to sliding mode control. IEEE Trans. Control Syst. Technol. 7(3), 328–342 (1999)

    Google Scholar 

  39. Aghababa, M.P.: Control of non-linear non-integer-order systems using variable structure control theory. Trans. Inst. Meas. Control 36(3), 425–432 (2014)

    MathSciNet  Google Scholar 

  40. Nieto, A.J., Morales, A.L., Trapero, J.R., Chicharro, J.M., Pintado, P.: An adaptive pneumatic suspension based on the estimation of the excitation frequency. J. Sound Vib. 330(9), 1891–1903 (2011)

    Google Scholar 

  41. Almutairi, N.B., Zribi, M.: Sliding mode control of coupled tanks. Mechatronics 16(7), 427–441 (2006)

    Google Scholar 

  42. Zhong, G., Kobayashi, Y., Hoshino, Y., Emaru, T.: System modeling and tracking control of mobile manipulator subjected to dynamic interaction and uncertainty. Nonlinear Dyn. 73(1–2), 167–182 (2013)

    MathSciNet  MATH  Google Scholar 

  43. Zhong, G., Deng, H., Kobayashi, Y., Wang, H.: Theoretical and experimental study on remote dynamic balance control for a suspended wheeled mobile manipulator. Nonlinear Dyn. 79(2), 851–864 (2014)

    Google Scholar 

  44. Zhong, G., Deng, H., Kobayashi, Y., Xin, G.: Measure and control of stability for mobile robots. In: Proceedings of the IEEE/SICE Annual Conference. Sapporo, Japan, pp. 545–548 (2014)

  45. Feng, Y., Yu, X., Man, Z.: Non-singular terminal sliding mode control of rigid manipulators. Automatica 38(12), 2159–2167 (2002)

    MathSciNet  MATH  Google Scholar 

  46. Feng, Y., Yu, X., Man, Z.: Non-singular terminal sliding mode control and its application for robot manipulators. In: Proceedings of the IEEE International Symposium on Circuits and Systems. Sydney, Austria, pp. 545–548 (2001)

Download references

Acknowledgments

This research is supported by National Natural Science Foundation of China (Grant No. 51405515) and National Basic Research Program of China (Grant No. 2013CB035504).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hua Deng.

Additional information

The Editor-in-Chief has retracted this article because it overlaps significantly with an unpublished manuscript by different authors which was previously submitted to Nonlinear Dynamics in 2013. All authors agree with this retraction.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhong, G., Deng, H. & Li, J. RETRACTED ARTICLE: Chattering-free variable structure controller design via fractional calculus approach and its application. Nonlinear Dyn 81, 679–694 (2015). https://doi.org/10.1007/s11071-015-2019-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-015-2019-z

Keywords

Navigation