Skip to main content
Log in

Bifurcation analysis for 2:1 and 3:1 super-harmonic resonances of an aircraft cracked rotor system due to maneuver load

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper focuses on the local bifurcation characteristics of an aircraft cracked rotor system mainly for the 2:1 and 3:1 super-harmonic resonances induced by the maneuver load. The motion equations of the system are formulated with the consideration of the nonlinear stiffness of the Duffing type and the breathing of a transverse crack on the shaft, as well as the maneuver load induced by the climbing and diving flight of the aircraft. By using the multiple scales method, the motion equations are analytically solved to obtain the bifurcation equations for 2:1 and 3:1 super-harmonic resonances, respectively. Furthermore, the two-state variable singularity method is employed to analyze the local bifurcation characteristics of the system affected by crack coefficient and maneuver load. For each case, two curves of hysteresis set dividing \(K-G\) parameter plane into three regions are demonstrated. Accordingly, bifurcation modes for different parameter combinations from the three regions and the two curves are obtained. The approach in this paper will provide an effective and convenient way to analyze the bifurcation characteristics of dynamical systems. The results in this paper will contribute to a better understanding of the effect of the maneuver load on the response and bifurcation characteristics of aircraft cracked rotor systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Chen, Y.S., Zhang, H.B.: Review and prospect on the research of dynamics of the aero-engine system. Acta Aeronaut. Astronaut. Sin. 32, 1371–1391 (2011)

    Google Scholar 

  2. Wauer, J.: On the dynamics of cracked rotors: a literature survey. Appl. Mech. Rev. 43, 13–17 (1990)

    Article  Google Scholar 

  3. Gasch, R.: A survey of the dynamic behaviour of a simple rotating shaft with a transverse crack. J. Sound Vib. 160, 313–332 (1993)

    Article  MATH  Google Scholar 

  4. Dimarogonas, A.: Vibration of cracked structures: a state of the art review. Eng. Fract. Mech. 55, 831–857 (1996)

    Article  Google Scholar 

  5. Jun, O.S., Eun, H.J., Earmme, Y.Y., Lee, C.W.: Modelling and vibration analysis of a simple rotor with breathing crack. J. Sound Vib. 155, 273–290 (1992)

    Article  MATH  Google Scholar 

  6. Gao, J.M., Zhu, X.M.: Research on the breathing model of crack on rotating shaft. Chin. J. Appl. Mech. 9, 108–112 (1992)

    MathSciNet  Google Scholar 

  7. Cheng, L., Li, N., Chen, X.F., He, Z.J.: The influence of crack breathing and imbalance orientation angle on the characteristics of the critical speed of a cracked rotor. J. Sound Vib. 330, 2031–2048 (2011)

    Article  Google Scholar 

  8. Sinou, J.-J.: Effects of a crack on the stability of a non-linear rotor system. Int. J. Nonlinear Mech. 42, 959–972 (2007)

    Article  Google Scholar 

  9. Chen, C.P., Dai, L.M., Fu, Y.M.: Nonlinear response and dynamic stability of a cracked rotor. Commun. Nonlinear Sci. Numer. Simul. 12, 1023–1037 (2007)

    Article  MATH  Google Scholar 

  10. Han, Q.K., Chu, F.L.: Parametric instability of a rotor-bearing system with two breathing transverse cracks. Eur. J. Mech. A Solid. 36, 180–190 (2012)

    Article  Google Scholar 

  11. Dai, L.M., Chen, C.P.: Dynamic stability analysis of a cracked nonlinear rotor system subjected to periodic excitations in machining. J. Vib. Control. 13, 537–556 (2007)

    Article  MATH  Google Scholar 

  12. Sinou, J.-J., Lees, A.W.: A non-linear study of a cracked rotor. Eur. J. Mech. A Solid. 26, 152–170 (2007)

    Article  MATH  Google Scholar 

  13. Sinou, J.-J.: AW Lees: the influence of cracks in rotating shafts. J. Sound Vib. 285, 1015–1037 (2005)

    Article  Google Scholar 

  14. AL-Shudeifat, M.A., Butcher, E.A., Stern, C.R.: General harmonic balance solution of a cracked rotor-bearing-disk system for harmonic and sub-harmonic analysis: analytical and experimental approach. Int. J. Eng. Sci. 48, 921–935 (2010)

    Article  Google Scholar 

  15. Lin, Y.L., Chu, F.L.: Numerical and experimental investigations of flexural vibrations of a rotor system with transverse or slant crack. J. Sound Vib. 324, 107–125 (2009)

    Article  Google Scholar 

  16. Sinou, J.-J.: Detection of cracks in rotor based on the \(2\times \) and \(3\times \) super-harmonic frequency components and the crack-unbalance interactions. Commun. Nonlinear Sci. Numer. Simul. 13, 2024–2040 (2008)

    Article  Google Scholar 

  17. Jun, O.S., Gadala, M.S.: Dynamic behavior analysis of cracked rotor. J. Sound Vib. 309, 210–245 (2008)

    Article  Google Scholar 

  18. Jun, O.S.: Dynamic behavior analysis of cracked rotor based on harmonic motion. Mech. Syst. Signal. Process. 30, 186–203 (2012)

    Article  Google Scholar 

  19. Saavedra, P.N., Cuitiño, L.A.: Vibration analysis of rotor for crack identification. J. Sound Vib. 8, 51–67 (2002)

    MATH  Google Scholar 

  20. Ishida, Y.: Cracked rotors: industrial machine case histories and nonlinear effects shown by simple Jeffcott rotor. Mech. Syst. Signal. Process. 22, 805–817 (2008)

    Article  Google Scholar 

  21. Prabhakar, S., Sekhar, A.S., Mohanty, A.R.: Transient lateral analysis of a slant-cracked rotor passing through its flexural critical speed. Mech. Mach. Theory 37, 1007–1020 (2002)

    Article  MATH  Google Scholar 

  22. Pennacchi, P., Bachschmid, N., Vania, A.: A model-based identification method of transverse cracks in rotating shafts suitable for industrial machines. Mech. Syst. Signal. Process. 20, 2112–2147 (2006)

    Article  Google Scholar 

  23. Robert, G.: Dynamic behavior of the Laval rotor with a transverse crack. Mech. Syst. Signal. Process. 22, 790–804 (2008)

    Article  Google Scholar 

  24. Ricci, R., Pennacchi, P.: Discussion of the dynamic stability of a multi-degree-of-freedom rotor system affected by a transverse crack. Mech. Mach. Theory 58, 82–100 (2012)

    Article  Google Scholar 

  25. Herbst, W.B.: Dynamics of air combat. J. Aircr. 20, 594–598 (1983)

    Article  Google Scholar 

  26. Snell, S.A., Enns, D.F., Garrard, W.L.: Nonlinear control of a supermaneuverable aircraft. Proceedings of the AIAA Guidance, Navigation and Control Conference, AIAA Paper 89-3486, pp. 519–531. Washington DC (1989)

  27. Lin, F.S., Meng, G., Eric, H.: Nonlinear dynamics of a cracked rotor in a maneuvering aircraft. Appl. Math. Mech. Engl. 25, 1139–1150 (2004)

    Article  MATH  Google Scholar 

  28. Hou, L., Chen, Y.S.: Analysis of 1/2 sub-harmonic resonance in a maneuvering rotor system. Sci. China Technol. Sci. 57, 203–209 (2014)

    Article  Google Scholar 

  29. Hou, L., Chen, Y.S., Cao, Q.J.: Nonlinear vibration phenomenon of an aircraft rub-impact rotor system due to hovering flight. Commun. Nonlinear Sci. Numer. Simul. 19, 286–297 (2014)

    Article  MathSciNet  Google Scholar 

  30. Yang, Y.F., Ren, X.M., Qin, W.Y., Wu, Y.F., Zhi, X.Z.: Analysis on the nonlinear response of cracked rotor in hover flight. Nonlinear Dyn. 61, 183–192 (2010)

    Article  MATH  Google Scholar 

  31. Han, Q.K., Chu, F.L.: Dynamic response of cracked rotor-bearing system under time-dependent base movements. J. Sound Vib. 332, 6847–6870 (2013)

    Article  Google Scholar 

  32. HaQuang, N., Mook, D.T., Plaut, R.H.: Non-linear structural vibrations under combined parametric and external excitations. J. Sound Vib. 118, 291–306 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  33. Szabelski, K., Warminski, J.: Vibration of a non-linear self-excited system with two degrees of freedom under external and parametric excitation. Nonlinear Dyn. 14, 23–36 (1997)

    Article  MATH  Google Scholar 

  34. Sanchez, N.E., Nayfeh, A.H.: Global behavior of a biased non-linear oscillator under external and parametric excitations. J. Sound Vib. 207, 137–149 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  35. Fatimah, S., Ruijgrok, M.: Bifurcations in an autoparametric system in 1:1 internal resonance with parametric excitation. Int. J. Nonlinear Mech. 37, 297–308 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  36. Soliman, M.S.: Suppression of steady state bifurcations and premature fractal basin erosion in nonlinear systems subjected to combined external and parametric excitations. Chaos Soliton. Fract. 4, 1871–1882 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  37. Yagasaki, K., Sakata, M., Kimura, K.: Dynamics of a weakly nonlinear system subjected to combined parametric and external excitation. ASME J. Appl. Mech. 57, 209–217 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  38. Belhaq, M., Houssni, M.: Quasi-periodic oscillations, chaos and suppression of chaos in a nonlinear oscillator driven by parametric and external excitations. Nonlinear Dyn. 18, 1–24 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  39. Genta, G., Delprete, C., Tonoli, A., Vadori, R.: Conditions for noncircular whirling of nonlinear isotropic rotors. Nonlinear Dyn. 4, 153–181 (1993)

    Google Scholar 

  40. Perepelkin, N.V., Mikhlin, Y.V., Pierre, C.: Non-linear normal forced vibration modes in systems with internal resonance. Int. J. Nonlinear Mech. 57, 102–115 (2013)

    Article  Google Scholar 

  41. Cveticanin, L.: Analytic approach for the solution of the complex-valued strong non-linear differential equation of duffing type. Phys. A 297, 348–360 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  42. Hou, L., Chen, Y.S., Li, Z.G.: Constant-excitation caused response in a class of parametrically excited systems with two degrees of freedom. Acta Phys. Sin. 63, 134501 (2014)

    Google Scholar 

  43. Nayfeh, A.H., Mook, D.T.: Nonlinear Oscillations. Wiley, New York (1979)

    MATH  Google Scholar 

  44. Chen, Y.S.: Nonlinear Dynamics. Higher Education Press, Beijing (2002)

    Google Scholar 

  45. Hou, L., Chen, Y.S.: Effect of constant maneuver load on vibration characteristics of aero-engine’s rotor system. J. Aerosp. Power. 28(12), 2790–2796 (2013)

    Google Scholar 

  46. Qin, Z.H., Chen, Y.S.: Singular analysis of bifurcation systems with two parameters. Acta Mech. Sin. 26, 501–507 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  47. Golubistky, M.S., Schaeffer, D.G.: Singularities and Groups in Bifurcation Theory I. Springer, New York (1985)

    Google Scholar 

  48. Golubistky, M.S., Schaeffer, D.G.: Singularities and Groups in Bifurcation Theory II. Springer, New York (1988)

    Google Scholar 

Download references

Acknowledgments

The authors would like to appreciate the reviewers’ comments and valuable suggestions and acknowledge the financial supports from the National Basic Research Program (973 Program) of China (Grant No. 2015CB057400) and the Natural Science Foundation of China (Grant No. 11302058).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Hou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hou, L., Chen, Y., Lu, Z. et al. Bifurcation analysis for 2:1 and 3:1 super-harmonic resonances of an aircraft cracked rotor system due to maneuver load. Nonlinear Dyn 81, 531–547 (2015). https://doi.org/10.1007/s11071-015-2009-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-015-2009-1

Keywords

Navigation