Skip to main content
Log in

Inclusion of dispersive terms in the averaged Lagrangian method: turning to the complex amplitude of envelope

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Whitham’s method of averaged Lagrangian is extended to include dispersive terms on the example of Stokes waves on the surface of a layer of ideal fluid. We derive a Lagrangian with explicit \({\mathcal {A}}_ {x}\overline{\mathcal {A}}_ {x}\) and \( {\mathcal {A}}_ {x}\overline{\mathcal {A}}\) terms partially present in Whitham’s Lagrangian in implicit form in the term with nonlinear frequency, \({\mathcal {A}}\) being the complex-valued amplitude of the wave envelope. The \({\mathcal {A}}_ {x} \overline{\mathcal {A}}_ {x}\) term generates the \(a_x^2\) term in the dispersive part of the Lagrangian, in addition to Whitham’s terms with \(a^2\) and \(a^4\) (\(a\) being the real wave amplitude). The use of complex amplitude of envelope in the averaged Lagrangian allowed us to avoid the introduction of the nonlinear dispersion relation in the Whitham’s method. The variation of the generalized Lagrangian gives the correct evolution equations for the wave envelope and velocity potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Whitham, G.B.: A general approach to linear and non-linear dispersive waves using a Lagrangian. J. Fluid Mech. 22, 273–283 (1965)

    Article  MathSciNet  Google Scholar 

  2. Whitham, G.B.: Non-linear dispersion of water waves. J. Fluid Mech. 27, 399–412 (1967)

    Article  MATH  MathSciNet  Google Scholar 

  3. Whitham, G.B.: Variational methods and applications to water waves. Proc. R. Soc. Lond. A 299, 6–25 (1967)

    Article  MATH  Google Scholar 

  4. Whitham, G.B.: Two-timing, variational principles and waves. J. Fluid Mech. 44, 373–395 (1970)

    Article  MATH  MathSciNet  Google Scholar 

  5. Whitham, G.B.: Linear and Nonlinear Waves. Wiley, New York (1974)

    MATH  Google Scholar 

  6. Yuen, H.C., Lake, B.M.: Nonlinear deep water waves: theory and experiment. Phys. Fluids 18, 956–960 (1975)

    Article  MATH  Google Scholar 

  7. Yuen, H.C., Lake, B.M.: Non-linear Dynamics of Deep-Water Gravity Waves. Academic Press, New York (1982)

    Google Scholar 

  8. Sedletsky, Y.V.: Addition of dispersive terms to the method of averaged Lagrangian. Phys. Fluids 24, 062105 (2012)

    Article  Google Scholar 

  9. Sedletsky, Y.V.: Dispersive terms in the averaged Lagrangian method. Int. J. Nonlinear Mech. 57, 140–145 (2013)

    Article  Google Scholar 

  10. Hasimoto, H., Ono, H.: Nonlinear modulation of gravity waves. J. Phys. Soc. Jpn. 33, 805–811 (1972)

    Article  Google Scholar 

  11. Nayfeh, A.H.: Nonlinear propagation of wave-packets on fluid interfaces. Trans. ASME Ser. E 43, 584–588 (1976)

    Article  MATH  Google Scholar 

  12. Sedletsky, Y.V.: The fourth-order nonlinear Schr ödinger equation for the envelope of Stokes waves on the surface of a finite-depth fluid. JETP 97, 180–193 (2003)

    Article  Google Scholar 

  13. Slunyaev, A.V.: A high-order nonlinear envelope equation for gravity waves in finite-depth water. JETP 101, 926–941 (2005)

    Article  Google Scholar 

  14. Luke, J.C.: A variational principle for a fluid with a free surface. J. Fluid Mech. 27, 395–397 (1967)

    Article  MATH  MathSciNet  Google Scholar 

  15. Chu, V.H., Mei, C.C.: On slowly-varying Stokes waves. J. Fluid Mech. 41, 873–887 (1970)

    Article  MATH  MathSciNet  Google Scholar 

  16. Benney, D.J., Roskes, G.J.: Wave instabilities. Stud. Appl. Math. 48, 377–385 (1969)

    MATH  Google Scholar 

  17. Davey, A., Stewartson, K.: On three-dimensional packets of surface waves. Proc. R. Soc. Lond. A338, 101–110 (1974)

    Article  MathSciNet  Google Scholar 

  18. Babaoglu, G., Eden, A., Erbay, S.: Global existence and nonexistence result for a generalized Davey–Stewartson system. J. Phys. A Math. Gen. 37, 11531–11546 (2004)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

The author is grateful to Dr. I.S. Gandzha for disinterested and inestimable help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. V. Sedletsky.

Appendix

Appendix

The coefficients of equation (25) before averaging over \(\theta _{0}\) are (\(E=\exp i\theta _{0}\))

$$\begin{aligned}&m_{1} =\varepsilon \frac{iE}{2k_{0}}\hbox {sinh}\xi ,\quad m_{2}=\varepsilon ^{2}\frac{iE^{2}}{2k_{0}}\hbox {sinh}2\xi ,\\&m_{11} =\frac{1}{8}\varepsilon ^{2}k_{0}\hbox {sinh}2\xi ,\quad m_{11}^{a}=-\varepsilon ^{2}\frac{E^{2}}{8}k_{0}\xi , \\&m_{12} ={\frac{E^{-1}}{6}}\varepsilon ^{3}k_{0}\hbox {sinh}3\xi ,\quad m_{12}^{a}=-\frac{1}{2}\varepsilon ^{3}k_{0}E^{3}\hbox {sinh}\xi ,\\&m_{22} =\frac{1}{4}\varepsilon ^{4}k_{0}\hbox {sinh}4\xi ,\quad m_{22}^{a}=-\frac{1}{2}\varepsilon ^{4}k_{0}E^{4}\xi ,\\&n_{1}=\varepsilon ^{2}\frac{iE}{2k_{0}^{2}}(\left( 1+k_{0}h\sigma \right) \hbox {sinh}\xi -\xi \hbox {cosh}\xi ),\\&n_{2} =\varepsilon ^{3}\frac{1}{8}(k_{0}h\sigma {\hbox {sinh}}\hbox {2} \xi -\xi \hbox {cosh}2\xi +\xi ),\\&n_{2}^{a} =-\varepsilon ^{3}\frac{E^{2}}{16}({\hbox {sinh}}\hbox {2}\xi +4k_{0}h\sigma \xi -2\xi ),\\&n_{3} =\varepsilon ^{4}\frac{E}{72}(9\hbox {sinh}\xi -\hbox {sinh3}\xi +6k_{0}h\sigma {\hbox {sinh}}\hbox {3}\xi -6\xi \hbox {cosh}3\xi ), \\&n_{3}^{a} =\varepsilon ^{4}\frac{E^{3}}{24}(9\hbox {sinh}\xi -\hbox { sinh3}\xi -6k_{0}h\sigma \hbox {sinh}\xi -6\xi \hbox {cosh}\xi ),\\&n_{4} =\varepsilon ^{4}{\frac{1}{16k_{0}}}\left( \left( {2k_{0}^{2}h^{2}\sigma ^{2}+2\xi ^{2}+1}\right) {\hbox {sinh}2\xi }\right. \\&\quad \left. -\,{4}k_{0}h\sigma \xi \hbox {cosh}2\xi {+}2\xi \left( {2}k_{0}h\sigma -1\right) \right) , \\&n_{4}^{a} =\varepsilon ^{4}{\frac{E^{2}}{48k_{0}}(-3k_{0}h\sigma \hbox { sinh}2\xi +3\xi \hbox {cosh}2\xi } \\&\quad -\,{6k_{0}^{2}h^{2}\sigma ^{2}\xi +6k_{0}h\sigma \xi +2\xi ^{3}-3\xi )},\\&n_{5}=\varepsilon ^{2}\frac{E}{2{k_{0}}}\hbox {sinh}\xi ,\quad n_{6}=\varepsilon ^{3}\frac{E^{2}}{4{k_{0}}}\hbox {sinh}2\xi ,\quad n_{7}=-i\varepsilon n_{1},\\&n_{j}^{a} =E^{2}n_{j},\quad j=8\div 11,\\&n_{12}^{a} =-E^{2}n_{12},\quad n_{13}^{a}=E^{2}n_{13},\\&n_{9} =\varepsilon \frac{1}{ik_{0}}n_{8}=\varepsilon ^{4}\frac{1}{16k_{0}} (\sinh 2\xi +2\xi ),\\&n_{10} =-2n_{12}=\varepsilon ^{4}\frac{iE}{12}(\sinh 3\xi +3\sinh \xi ),\\&n_{11}=\nu _{13}=\varepsilon ^{4}\frac{i}{32k_{0}}(\left( 2k_{0}h\sigma +1\right) \hbox {sinh}2\xi \\&\quad -\,2\,\xi \hbox {cosh}2\xi +4k_{0}h\sigma \xi ),\quad n_{14}=\varepsilon ^{2}n_{5}. \end{aligned}$$

Note that \(\theta _{0}\) is also present in \(\xi =k_{0}(h+\eta )\), where \(\eta \) is given by Eq. (20).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sedletsky, Y.V. Inclusion of dispersive terms in the averaged Lagrangian method: turning to the complex amplitude of envelope. Nonlinear Dyn 81, 383–393 (2015). https://doi.org/10.1007/s11071-015-1998-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-015-1998-0

Keywords

Navigation