Skip to main content
Log in

Analysis of a toxin producing phytoplankton–zooplankton interaction with Holling IV type scheme and time delay

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The present paper aims to study the interaction of toxin producing phytoplankton (TPP)–zooplankton (a prey–predator interaction) and its role in plankton ecology. The delay in the zooplankton predation is considered and its effect on the overall dynamic of phytoplankton–zooplankton interaction is studied. Moreover, Holling IV type response function is used for zooplankton grazing to account for the effect of toxication by the TPP population. It is shown that time delay can destabilise the given system and induce oscillation in population due to Hopf-bifurcation. Further stability of the bifurcating periodic solution is determined by using normal form theory and centre manifold arguments. Some numerical simulations are executed to validate the analytical findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Anderson, D.M.: Toxic algae blooms and red tides: a global perspective. In: Okaichi, T., Anderson, D.M., Nemoto, T. (eds.) Red tides: biology, environmental science and toxicology, pp. 11–21. Elsevier, New York (1989)

    Google Scholar 

  2. Smayda, T.: Bloom dynamics: physiology, behaviour, trophic effects. Limnol. Oceaongr. 42(5, part 2), 1132–1136 (1997)

    Article  Google Scholar 

  3. Hallegraeff, G.M.: A review of harmful algae blooms and the apparent global increase. Phycologia 32, 79–99 (1993)

    Article  Google Scholar 

  4. Nielsen, T., Kiorboe, T., Bjornsen, P.: Effects of Chrysochromulina polylepis subsurface bloom on the plankton community. Mar. Ecol. Prog. Ser. 62, 21–35 (1990)

    Article  Google Scholar 

  5. Estep, K., Nejstgaard, J., Skjoldal, H., Rey, F.: Predation by copepods upon natural populations of Phaeocystis pouchetii as a function of the physiological state of the prey. Mar. Ecol. Prog. Ser. 67, 235–249 (1990)

    Article  Google Scholar 

  6. Hansen, F.: Trophic interaction between zooplankton and Paeocystis cf. Globosa. Helgol. Meeresunters. 49, 283–293 (1995)

    Article  Google Scholar 

  7. Ives, J.: Possible mechanism underlying copepod grazing responses to levels of toxicity in red tide dinoflagellates. J. Exp. Mar. Biol. Ecol. 112, 131–145 (1987)

    Article  Google Scholar 

  8. Buskey, E., Hyatt, C.: Effects of Texas (USA) brown tide alga on planktonic grazers. Mar. Ecol. Prog. Ser. 126, 285–292 (1995)

    Article  Google Scholar 

  9. Wang, S., Liu, Z.: Mathematical simulation of red tide blooms process in a closed environment. Oceanologia et Limnologia Sinica 29(2), 163–168 (1998)

    Google Scholar 

  10. Wang, S., Feng, G., Duan, M., Liu, Z.: A model on nutrient dynamics for noctiluca scintillans red tide in Dapeng Bay. Trop. Oceanol. 16(1), 36–42 (1997)

    Google Scholar 

  11. Wang, Hong-li, Feng, Jianfeng, Li, Chao, Shen, Fei: Research on nonlinear dynamics of multi-species HAB model. Tianjin Univ. Trans. 36(4), 406–410 (2003)

    MathSciNet  Google Scholar 

  12. Pal, S., Chatterjee, S., Chattopadhyay, J.: Role of toxin and nutrient for the occurrence and termination of plankton bloom-results drawn from field observations and a mathematical model. J. Biosyst. 90, 87–100 (2007)

    Article  Google Scholar 

  13. Chakarborty, S., Roy, S., Chattopadhyay, J.: Nutrient-limiting toxin producing and the dynamics of two phytoplankton in culture media: a mathematical model. J. Ecol. Model. 213(2), 191–201 (2008)

    Article  Google Scholar 

  14. Sarkar, R.R., Chattopadhyay, J.: Occurrence of planktonic blooms under environmental fluctuations and its possible control mechanism-mathematical models and experimental observations. J. Theor. Biol. 224, 501–516 (2003)

    Article  Google Scholar 

  15. Mukhopadhyay, B., Bhattacharyya, R.: Modelling phytoplankton allelopathy in a nutrient-plankton model with spatial heterogeneity. Ecol. Model. 112, 131–145 (1987)

    Google Scholar 

  16. Ruan, S.: Persistence and coexistence in zooplankton–phytoplankton-nutrient models with instantaneous nutrient recycling. J. Math. Biol. 31(6), 633–654 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  17. Fan, A., Han, P., Wang, K.: Global dynamics of a nutrient-plankton system in the water ecosystem. Appl. Math. Comput. 219(15), 8269–8276 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  18. Zhao, I., Wei, J.: Stability and bifurcation in a two harmful phytoplankton–zooplankton system. Chaos Solitons Fractals 39, 1395–1409 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  19. Clother, D.R., Brindley, J.: Excitability of an age-structured plankton ecosystem. J. Math. Biol. 39, 377–420 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  20. Edwards, A.M., Brindley, J.: Zooplankton mortality and the dynamical behaviour of plankton population models. Bull. Math. Biol. 61, 303–339 (1999)

    Article  Google Scholar 

  21. Cushing, J.M.: Integrodifferential equations and delay models in population dynamics. Springer, Heidelberg (1977)

    Book  MATH  Google Scholar 

  22. Gopalsamy, K.: Stability and oscillations in delay differential equations of population dynamics. Kluwer Academic, Dordrecht, The Netherlands (1992)

  23. Kuang, Y.: Delay differential equations with applications in population dynamics. Academic Press, New York (1993)

    MATH  Google Scholar 

  24. Macdonald, N.: Biological delay systems: linear stability theory. Cambridge University Press, Cambridge (1989)

    MATH  Google Scholar 

  25. Beretta, E., Kuang, Y.: Geometric stability switch criteria in delay differential systems with delay dependant parameters. SIAM J. Math. Anal. 33, 1144–1165 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  26. Gazi, N.H., Bandyopadhyay, M.: Effect of time delay on a harvested predator-prey model. J Appl Math Comput. 26, 263–280 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  27. Sharma, A., Sharma, A.K., Agnihotri, K.: The dynamic of plankton-nutrient interaction with discrete delay. Appl. Math. Comput. 231, 503–515 (2014)

    Article  MathSciNet  Google Scholar 

  28. Das, K., Ray, S.: Effect of delay on nutrient cycling in phytoplankton–zooplankton interactions in estuarine system. Ecol. Model. 215, 69–76 (2008)

    Article  Google Scholar 

  29. He, X.Z., Ruan, S.: Global stability in chemostat-type plankton models with delayed nutrient recycling. J. Math. Biol. 37, 253–271 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  30. Freedman, H.I.: Models of competition in the chemostat with instantaneous and delayed nutrient recycling. J. Math. Biol. 31, 513–527 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  31. Kloosterman, M., Campbell, S.A., Poulin, F.J.: A closed NPZ model with delayed nutrient recycling. J. Math. Biol. 68(4), 815–850 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  32. Jang, S.R.J., Baglama, J.: Nutrient-plankton models with nutrient recycling. Comput. Math. Appl. 49, 375–387 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  33. Chattopadhyay, J., Sarkar, R.R., Abdllaoui, A.: A delay differential equation model on harmful algal blooms in the presence of toxic substances. IMA J. Math. Appl. Med. Biol. 19, 137–161 (2002)

  34. Saha, T., Bandyopadhyay, M.: Dynamical analysis of toxin producing phytoplankton–zooplankton interactions. Nonlinear Anal. R. World Appl. 10, 314–332 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  35. Rehim, M., Imran, M.: Dynamical analysis of a delay model of phytoplankton–zooplankton interaction. Appl. Math. Model. 36, 638–647 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  36. Wang, Y., Jiang, W., Wang, H.: Stability and global Hopf bifurcation in toxic phytoplankton–zooplankton model with delay and selective harvesting. Nonlinear Dyn. 73, 881–896 (2013)

    Article  MATH  Google Scholar 

  37. Hassard, B.D., Kazarinoff, N.D., Wan, Y.H.: Theory and applications of Hopf bifurcation. Cambridge University Press, Cambridge (1981)

    MATH  Google Scholar 

  38. Pasternak, A.F., Mikhee, V.N., Wanzenbock, J.: How plankton copepods avoid fish predation: from individual responses to variations of the life cycle. J. Ichthyol. 46, 220226 (2006)

    Google Scholar 

  39. Birkhoff, G., Rota, G.C.: Ordinary differential equation. Massachusetts, Ginn (1982)

    Google Scholar 

  40. Faria, T.: Stability and bifurcation for a delayed predator–prey model and the effect of diffusion. JMAA 254, 433–463 (2001)

    MATH  MathSciNet  Google Scholar 

  41. Wang, X., Liu, H., Xu, C.: Hopf bifurcations in a predator–prey system of population allelopathy with a discrete delay and a distributed delay. Nonlinear Dyn. 69(4), 2155–2167 (2012)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

Authors are thankful to anonymous reviewers for their careful reading, useful comments and constructive suggestions for the improvement of the present research work. Further authors gratefully acknowledge the support provided by the Punjab Technical University, Kapurthala, Punjab, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amit Sharma.

Additional information

Amit Sharma is a Research Scholar in PTU, Kapurthala, India.

Appendix

Appendix

In order to compute the properties of the Hopf-bifurcation, we use the following transformation, \(u_{1}=P-P_*\), \(u_{2}=Z-Z_*\) and using the Taylor series expansion about \(E_*=(P_*,Z_*)\), the given system (2.1) can be rewritten as,

$$\begin{aligned} {\left\{ \begin{array}{ll} \frac{{\hbox {d}}u_1}{{\hbox {d}}t}=a_{10}u_{1}(t)+a_{01}u_{2}(t-\tau )\\ \qquad \quad +{\displaystyle \sum _{i+j\ge 2}}a_{ij}{u^{i}}_{1}(t){u^{j}}_{2}(t-\tau )=F_{1}(u_1,u_2)\\ \frac{{\hbox {d}}u_2}{{\hbox {d}}t}=b_{10}u_{1}(t)+b_{01}u_{2}(t)\\ \qquad \quad +{\displaystyle \sum _{i+j\ge 2}}b_{ij}{u^{i}}_{1}(t){u^{j}}_{2}(t)=F_{2}(u_1,u_2) \end{array}\right. } \end{aligned}$$
(8.1)

where

$$\begin{aligned} a_{ij}={\displaystyle \frac{1}{!i !j}}{\displaystyle \frac{{\partial }^{i+j}F_{1}}{\partial P^{i}\partial Z^{j}(t-\tau )}}, \quad b_{ij}={\displaystyle \frac{1}{!i !j}}{\displaystyle \frac{{\partial }^{i+j}F_{2}}{\partial P^{i}\partial Z^{j}}}, \end{aligned}$$

The coefficients of the nonlinear terms are given by

$$\begin{aligned} a_{20}&= -2\delta _1-\beta Z_*\frac{\left( -\frac{6P^3_*}{i^2}-\frac{4P^2_*}{i}+\frac{2P_*b}{i}+2b\right) }{(\frac{P^2_*}{i}+P_*+b)^3} ,\\ a_{11}&= - \frac{\beta \left( -\frac{P^2_*}{i}+b\right) }{\left( \frac{P^2_*}{i}+P_*+b\right) ^2},\\ b_{20}\!&= \!\frac{\beta _1 Z\left[ \left( \!-\!2\frac{P_*}{i}\left( \frac{P^2_*}{i}\!+\!P_*\!+\!b\right) \right) \!-\!\left( \frac{P^2_*}{i}\!+\!b\right) ^2\left( \frac{2P^*}{i}\!+\!1\right) \right] }{\left( \frac{P^2_*}{i}\!+\!P_*\!+\!b\right) ^3},\\ b_{11}&= \frac{\beta _1\left( -\frac{P^2_*}{i}+b\right) }{\left( \frac{P^2_*}{i}+P_*+b\right) ^2} \end{aligned}$$

Let \(\tau =\tau _{k}+\mu \) , \(\bar{u}_{i}(t)=u_{i}(\tau t)\) and \(u_{t}(\theta )=u(t+\theta )\) for \(\theta \in [-1,0]\) and dropping the bars for simplification of notations, system (8.1) becomes a functional differential equation in \(C=C([-1,0],\mathfrak {R}^2)\) as

$$\begin{aligned} \dot{u}(t)=L_{\mu }(u_{t})+f(\mu ,u_{t}) \end{aligned}$$
(8.2)

where \(u(t)=(u_1(t),u_2(t))^{T}\in \mathfrak {R}^{2}\) and \(L_{\mu }:C\rightarrow \mathfrak {R}^{3}, f:\mathfrak {R}\times C\rightarrow \mathfrak {R}^{2}\) are given, respectively, by

$$\begin{aligned} L_{\mu }(\phi )=(\tau _{k}+\mu )[A_{11}\phi (0)+A_{22}\phi (-1)] \end{aligned}$$
(8.3)
$$\begin{aligned} A_{11}=\left[ \begin{array}{ccc} a_{10} &{}\quad 0 \\ b_{10} &{}\quad b_{01} \end{array} \right] , A_{22}=\left[ \begin{array}{ccc} 0 &{}\quad a_{01}\\ 0 &{}\quad 0 \end{array} \right] \end{aligned}$$

and

$$\begin{aligned} f(\mu ,\phi )=(\tau _{k}+\mu )\left[ \begin{array}{cc} a_{20}\phi ^2_{1}(0)+a_{11}\phi _(0)\phi _{2}(-1)\\ b_{20}\phi ^2_{1}(0)+b_{11}\phi _{1}(0)\phi _{2}(0) \end{array}\right] \nonumber \\ \end{aligned}$$
(8.4)

By Riesz representation theorem, there exists a function \(\phi (\theta ,\mu )\) of bounded variation for \(\theta \in [-1,0]\) such that

$$\begin{aligned} L_{\mu }(\phi )=\int _{-1}^0{\hbox {d}}\eta (\theta ,\mu )\phi (\theta )\quad for \quad \phi \in C \end{aligned}$$
(8.5)

In fact, we can choose

$$\begin{aligned} \phi (\theta ,\mu )=(\tau _{k}+\mu )[A_{11}\delta (\theta )-A_{22}\delta (\theta +1)] \end{aligned}$$
(8.6)

where \(\delta \) denote the Dirac delta function.

For \(\phi \in C([-1,0],\mathfrak {R}^2)\), define

$$\begin{aligned} A(\mu )\phi (\theta )= {\left\{ \begin{array}{ll} {\displaystyle \frac{{\hbox {d}}\phi (\theta )}{{\hbox {d}}\theta }} &{} \theta \in [-1,0), \\ \int _{-1}^0{\hbox {d}}\varsigma (s,\mu )\phi (s) &{} \theta =0 \end{array}\right. } \end{aligned}$$

and

$$\begin{aligned} R(\mu )\phi (\theta )={\left\{ \begin{array}{ll} 0 &{} \theta \in [-1,0), \\ f(\mu ,\phi ) &{} \theta =0 \end{array}\right. } \end{aligned}$$

Then system (8.2) is equivalent to

$$\begin{aligned} \dot{u}(t)=A(\mu )u_{t}+R(\mu )u_{t}, \end{aligned}$$
(8.7)

For \(\psi \in C^{1}([0,1],(\mathfrak {R}^{2})^*)\), define

$$\begin{aligned} A^{*}\psi (s) = {\left\{ \begin{array}{ll} -{\displaystyle \frac{{\hbox {d}}\psi (s)}{{\hbox {d}}s}} &{}\quad s\in (0,1], \\ \int _{-1}^0{\hbox {d}}\varsigma (t,0)\psi (-t) &{}\quad s=0 \end{array}\right. } \end{aligned}$$

and a bilinear inner product

$$\begin{aligned}&<\psi (s),\phi (\theta )>=\bar{\psi }(0)\phi (0)\nonumber \\&-\!\int _{-1}^0\int _{\xi =0}^\theta \bar{\psi }(\xi \!-\!\theta ){\hbox {d}}\eta (\theta )\phi (\xi ){\hbox {d}}\xi \nonumber \\ \end{aligned}$$
(8.8)

where \(\varsigma (\theta )=\varsigma (\theta ,0)\). Then \(A(0)\) and \(A^{*}\) are adjoint operators. From the results of last section, we know that \(\pm \iota \omega _{0}\tau _{k}\) are the eigenvalues of \(A(0)\) and \(\mp \iota \omega _{0}\tau _{k}\) are the eigenvalues of \(A^*\).

Let \(q(\theta )=(1,\alpha )^Te^{\iota \omega _{0}\tau _{k}\theta }\) be the eigenvector of \(A(0)\) corresponding to the eigenvalue \(\iota \omega _{0}\tau _k\) and \(q^{*}(s)=D(1,\beta )e^{\iota \omega _{0}\tau _{k}s}\) be the eigenvector of \(A^{*}\) corresponding to the eigenvalue \(-\iota \omega _{0}\tau _k\), then

$$\begin{aligned} A(0)q(\theta )=\iota \omega \tau _kq(\theta ) \end{aligned}$$

It follows from the definition of \(A(0)\), \(L_{\mu }(\phi )\) and \(\eta (\theta , \mu )\) that

$$\begin{aligned} \left[ (A_{11}+A_{22}e^{-\iota \omega \tau _0})-\iota \omega I\right] q(0)=0\\ \end{aligned}$$

where I is identity matrix of order 2, that is,

$$\begin{aligned} \left( \begin{array}{cc} a_{10}-\iota \omega &{}\quad a_{01}e^{-\iota \omega \tau _0} \\ b_{10} &{}\quad b_{01}-\iota \omega _0 \\ \end{array} \right) \left( \begin{array}{c} 1 \\ \alpha \\ \end{array} \right) =\left( \begin{array}{c} 0 \\ 0 \\ \end{array} \right) \end{aligned}$$

Solving the above equations, we get

$$\begin{aligned} q(0)=\left( \begin{array}{c} 1 \\ \alpha \\ \end{array} \right) =\left( \begin{array}{c} 1 \\ {\displaystyle \frac{b_{10}}{\iota \omega _{0}-b_{01}}}\\ \end{array} \right) \end{aligned}$$

From the definition of \(A^*\), we obtain

$$\begin{aligned} A^*(\mu )\psi (s)&= \int _{-1}^0{\hbox {d}}\eta (t,0)\psi (-t)\\&= A_{11}^T\psi (0)+A_{22}^T\psi (-1)\\ \end{aligned}$$

Since \(q(\theta )\) is the eigenvector of \(A^*\) corresponding to -\(\iota \omega _0\tau _k\), then we have

$$\begin{aligned}&A^{*}q^{*}(0)=-\iota \omega _{0}\tau _{kq}^{*}(\theta )\\&{\hbox {or}} \\&\left[ ({A_{11}^{T}}+{A_{22}^{T}} {e}^{\iota \omega \tau _{0}})+\iota \omega I\right] {\left( q^{*}(0)\right) }^T=0 \end{aligned}$$

where I is identity matrix of order 2, that is,

$$\begin{aligned} \left( \begin{array}{cc} a_{10}+\iota \omega &{}\quad b_{10} \\ a_{01}e^{-\iota \omega \tau _0} &{}\quad b_{01}+\iota \omega _0 \\ \end{array} \right) \left( \begin{array}{c} 1 \\ \beta \\ \end{array} \right) =\left( \begin{array}{c} 0 \\ 0 \\ \end{array} \right) \end{aligned}$$

Solving the above equations, we get

$$\begin{aligned} q(0)=\left( \begin{array}{c} 1 \\ \beta \\ \end{array} \right) =\left( \begin{array}{c} 1 \\ -{\displaystyle \frac{\iota \omega _0+a_{10}}{b_{10}}}\\ \end{array} \right) \end{aligned}$$

Now,

$$\begin{aligned}&(q^*, \bar{q})=\bar{D}\left[ (1,\bar{\beta })(1,\alpha )-\int _{-1}^0\int _{\xi =0}^\theta (1,\bar{\beta })\right. \nonumber \\&\quad \quad \left. e^{-\iota (\xi -\theta )\omega _0\tau _k}){\hbox {d}}\eta (\theta )(1, \alpha )^{T}e^{\iota \xi \omega _0\tau _k}\right] \\&\quad =\bar{D}\left[ 1+\alpha \bar{\beta }-\int _{-1}^0(1,\bar{\beta })\theta e^{\iota \theta \omega _0\tau _k}){\hbox {d}}\eta (\theta )(1, \alpha )^T\right] \\&\quad =\bar{D}\left[ 1+\alpha \bar{\beta }+\tau _k\alpha e^{-\iota \omega _0\tau _k}\right] \\ \end{aligned}$$

In order to have \((q^*, q)=1\), we can choose \(D={\displaystyle \frac{1}{1+\bar{\alpha }\beta +\bar{\alpha }a_{01}\tau _{k}e^{\iota \omega _{0}\tau _{k}}}}\). such that \((\psi , A\phi )=(A^*\psi , \phi )\), or \(-\iota \omega _0(q^*, \bar{q})=(q^*, A\bar{q})=(A^*q^*, \bar{q})=(-\iota \omega _0q^*, \bar{q})=\iota \omega _0(q^*, \bar{q})\) i.e. \((q^*, \bar{q})=0\).

Next we will compute the coordinates to describe the centre manifold \(C_{0}\) at \(\mu =0\). Let \(u_{t}\) be the solution of (8.7) when \(\mu =0\).

Define

$$\begin{aligned}&z(t)=<q^*,u_{t}>,\nonumber \\&\quad W(t,\theta )=u_{t}(\theta )-2Re\{z(t)q(\theta )\} \end{aligned}$$
(8.9)

On the centre manifold \(C_{0}\), we have

$$\begin{aligned} W(t,\theta )=W(z(t),\bar{z}(t),\theta ) \end{aligned}$$

where

$$\begin{aligned} W(z(t),\bar{z}(t),\theta )&= W_{20}(\theta )\frac{z^2}{2}+W_{11}(\theta )z\bar{z}\nonumber \\&+\,W_{02}(\theta )\frac{{\bar{z}}^2}{2}+........ \end{aligned}$$
(8.10)

z and \(\bar{z}\) are local coordinates for centre manifold \(C_{0}\) in the direction of \(q\) and \(q^*\) respectively. Here we consider only real solutions as W is real if \(u_{t}\) is real. For the solution \(u_{t}\in C_{0}\) of (8.7), since \(\mu =0\), we have

$$\begin{aligned} \dot{z}(t)&= \iota \omega _{0}\tau _{k}z+\bar{q}^*(0)f(0, W(z,\bar{z},0)+2Re(zq(\theta )))\\&= \iota \omega _{0}\tau _{k}z+\bar{q}^*(0)f_{0}(z,\bar{z}) \end{aligned}$$

This equation can be rewritten as

$$\begin{aligned} \dot{z}(t)=\iota \omega _0\tau _k z+g(z,\bar{z}) \end{aligned}$$

where

$$\begin{aligned} g(z,\bar{z})&= \bar{q}^*(0)f_{0}(z,\bar{z})\nonumber \\&= g_{20}(\theta )\frac{z^2}{2}+g_{11}(\theta )z\bar{z}+g_{02}(\theta )\frac{{\bar{z}}^2}{2}\nonumber \\&+\,g_{21}(\theta )\frac{z^2\bar{z}}{2}+........ \end{aligned}$$
(8.11)

From (8.9) and (8.10), we have

$$\begin{aligned} u_{t}(\theta )&= W(t,\theta )+2Re\{z(t)q(\theta )\} \nonumber \\&= W_{20}(\theta )\frac{z^2}{2}+W_{11}(\theta )z\bar{z}+W_{02}(\theta )\frac{{\bar{z}}^2}{2}\nonumber \\&+\,(1,q_1,q_2)^{T}e^{\iota \omega _0\tau _{k}\theta }z\nonumber \\&+\,(1,\bar{q_1},\bar{q_2})^{T}e^{-\iota \omega _0\tau _{k}\theta }\bar{z}+.... \end{aligned}$$
(8.12)

Now from (8.4) and (8.11), it follows that

$$\begin{aligned}&g(z,\bar{z})=\tau _k\bar{D}(1,\bar{\beta }) \left[ \begin{array}{cc} &{}a_{20}u^2_{1t}(0)+a_{11}u_{1t}(0)u_{2t}(-1) \nonumber \\ &{}b_{20}u^2_{1t}(0)+b_{11}u_{1t}(0)u_{2t}(0) \end{array}\right] \\&\quad =\tau _k\bar{D}(1,\bar{\beta }) \left[ \begin{array}{c} p_1z^2+p_2z\bar{z}+p_3\bar{z}^2+p_4\frac{z^2}{2}\bar{z}+........ \\ q_1z^2+q_2z\bar{z}+q_3\bar{z}^2+q_4\frac{z^2}{2}\bar{z}+........ \end{array}\right] \nonumber \\ \end{aligned}$$
(8.13)

or

$$\begin{aligned} g(z,\bar{z})&= \tau _k\bar{D}\left[ \left( p_1+\bar{\beta }q_1\right) z^2\right. \nonumber \\&+\left( p_2+\bar{\beta }q_2\right) z\bar{z}+\left( p_3+\bar{\beta }q_3\right) \bar{z}^2\nonumber \\&\left. +\left( p_4+\bar{\beta }q_4\right) \frac{z^2}{2}\bar{z}+............\right] \end{aligned}$$
(8.14)

where

$$\begin{aligned} p_1&= a_{20}+a_{11}\alpha e^{-\iota \omega \tau _0}, p_2=2a_{20}+2Re\left( \alpha e^{\iota \omega \tau _0}\right) a_{11},\\ p_3&= a_{20}+a_{11}\bar{\alpha }e^{\iota \omega \tau _0},\\ p_4&= \left( 2W^1_{20}(0)+4W^1_{11}(0)\right) a_{20}+a_{11}\left( \bar{\alpha }W^1_{20}(0)e^{\iota \omega \tau _0}\right. \\&\quad \left. +\,2\alpha W^2_{11}(0)e^{-\iota \omega \tau _0}+W^2_{20}(-1)\right) +2W^2_{11}(-1)\\ q_1&= b_{20}+b_{11}\alpha , q_2=2b_{20}+2Re(\alpha )b_{11},\\&q_3=b_{20}+b_{11}\bar{\alpha },\\ q_4&= \left( 2W^1_{20}(0)+4W^1_{11}(0)\right) b_{20}\nonumber \\&+\,b_{11}\left( \bar{\alpha }W^1_{20}(0)+2\alpha W^2_{11}(0)+W^2_{20}(0)\right) \\&+\,2W^2_{11}(0)\\ \end{aligned}$$

Comparing coefficients of (8.11) and (8.14), we find

$$\begin{aligned} {\left\{ \begin{array}{ll} g_{20}=2\bar{D}\tau _{k}\left( p_1+q_1\bar{\beta }\right) \\ g_{11}=\bar{D}\tau _{k}\left( p_2+q_2\bar{\beta }\right) \\ g_{02}=2\bar{D}\tau _{k}\left( p_3+q_3\bar{\beta }\right) \\ g_{21}=\bar{D}\tau _{k}\left( p_4+q_4\bar{\beta }\right) \\ \end{array}\right. } \end{aligned}$$
(8.15)

Since \(W_{20}\) and \(W_{11}\) are in \(g_{21}\), we still to compute them.

Now from (8.7) and (8.9), we have

$$\begin{aligned} \dot{W}&= \dot{u}(t)-\dot{z}q-\bar{\dot{z}}\bar{q} \nonumber \\&= {\left\{ \begin{array}{ll} A(0)W-2Re\left\{ \bar{q^*}(0)f_{0}q(\theta )\right\} &{} \theta \in [-1,0) \\ A(0)W-2Re\left\{ \bar{q^*}(0)f_{0}q(0)\right\} \\ \quad +f_0(z,\bar{z}) &{} \theta =0 \end{array}\right. }\nonumber \\&\triangleq A(0)W+H(z,\bar{z},\theta ) \end{aligned}$$
(8.16)

where

$$\begin{aligned} H(z,\bar{z},\theta )&= H_{20}(\theta )\frac{z^2}{2}+H_{11}(\theta )z\bar{z}\nonumber \\&+\,H_{02}(\theta )\frac{{\bar{z}}^2}{2}+........ \end{aligned}$$
(8.17)

Substituting (8.17) into (8.16) and comparing the coefficients, we get

$$\begin{aligned}&(A(0)-2\iota \omega _{0}\tau _{k}I)W_{20}(\theta )=-H_{20}(\theta ),\nonumber \\&A(0)W_{11}(\theta )=-H_{11}(\theta ) \end{aligned}$$
(8.18)

From (8.16) and for \(\theta \in [-1,0)\)

$$\begin{aligned} H(z,\bar{z},\theta )&= -\bar{q}^*(0)f_0q(\theta )-q^*(0)\bar{f_0}\bar{q}(\theta )\nonumber \\&= -g(z,\bar{z})q(\theta )-\bar{g}(z,\bar{z})\bar{q}(\theta ) \end{aligned}$$
(8.19)

Using (8.11) in (8.19) and comparing coefficients with (8.17), we can obtain

$$\begin{aligned} H_{20}(\theta )=-g_{20}q(\theta )-\bar{g}_{02}\bar{q}(\theta ) \end{aligned}$$
(8.20)

and

$$\begin{aligned} H_{11}(\theta )=-g_{11}q(\theta )-\bar{g}_{11}\bar{q}(\theta ) \end{aligned}$$
(8.21)

From the definition of \(A(0)\), (8.18) and (8.20), we obtain

$$\begin{aligned} \dot{W}_{20}(\theta )&= 2\iota \omega _0\tau _k W_{20}(\theta )+g_{20}q(\theta )+\bar{g}_{02}\bar{q}(\theta ) \end{aligned}$$

Solving it and for \(q(\theta )=(1,q_1,q_2)^Te^{\iota \omega _0\tau _k\theta }\), we have

$$\begin{aligned} W_{20}(\theta )&= \frac{\iota g_{20}}{\omega _0\tau _k}q(0)e^{\iota \omega _0\tau _k\theta }+\frac{\iota \bar{g}_{02}}{3\omega _0\tau _k}\bar{q}(0)e^{-\iota \omega _0\tau _k\theta }\nonumber \\&+\,E_{1}e^{2\iota \omega _0\tau _k\theta } \end{aligned}$$
(8.22)

Similarly, from (8.18) and (8.21) it follows that,

$$\begin{aligned} W_{11}(\theta )&= -\frac{\iota g_{11}}{\omega _0\tau _k}q(0)e^{\iota \omega _0\tau _k\theta }\nonumber \\&+\frac{\iota \bar{g}_{11}}{\omega _0\tau _k}\bar{q}(0)e^{-\iota \omega _0\tau _k\theta }+E_{2} \end{aligned}$$
(8.23)

where \(E_{1}=({E_{1}}^{(1)},{E_{1}}^{(2)})^{T}\) and \(E_{2}=({E_{2}}^{(1)},{E_{2}}^{(2)})^{T}\) are three dimensional constant vectors, and can be determined by setting \(\theta =0\) in \(H(z,\bar{z},\theta )\).

Again from the definition of \(A(0)\) and (8.18), we have

$$\begin{aligned} \int _{-1}^0{\hbox {d}}\varsigma (\theta )W_{20}(\theta )=2\iota \omega _{0}\tau _{k}W_{20}(0)-H_{20}(0) \end{aligned}$$
(8.24)

and

$$\begin{aligned} \int _{-1}^0{\hbox {d}}\varsigma (\theta )W_{11}(\theta )=-H_{11}(0) \end{aligned}$$
(8.25)

where \(\varsigma (\theta )=\varsigma (0,\theta )\).

From (8.16), we know when \(\theta =0\),

$$\begin{aligned} H(z,\bar{z},0)&= -2Re(\bar{q}^*(0)f_{0}q(0))+f_{0}(z,\bar{z}) \nonumber \\&= -\bar{q}^*(0)f_{0}q(0)-q^*(0)\bar{f}_{0}\bar{q}(0)\!+\!f_{0}(z,\bar{z}) \end{aligned}$$

That is,

$$\begin{aligned}&H_{20}(\theta )\frac{z^2}{2}+H_{11}(\theta )z\bar{z}+H_{02}(\theta )\frac{{\bar{z}}^2}{2}+.......\nonumber \\&\quad =-q(0)\left\{ g_{20}\frac{z^2}{2}+g_{11}z\bar{z}+g_{02}\frac{{\bar{z}}^2}{2}+......\right\} \nonumber \\&\quad \quad \bar{q}(0)\left\{ \bar{g}_{20}\frac{{\bar{z}}^2}{2}+\bar{g}_{11}z\bar{z}+\bar{g}_{02}\frac{z^2}{2}+....\right\} +f_{0}(z,\bar{z})\nonumber \\ \end{aligned}$$
(8.26)

From (8.9), we have

$$\begin{aligned} u_{t}(\theta )&= W(t,\theta )+2Re\{z(t)q(\theta )\}\\&= W(t,\theta )+z(t)q(\theta )+\bar{z}(t)\bar{q}(t)\\&= W_{20}(\theta )\frac{z^2}{2}+W_{11}(\theta )z\bar{z}+W_{02}(\theta )\frac{{\bar{z}}^2}{2}+.... \end{aligned}$$

Thus we can obtain,

$$\begin{aligned} f_{0}=2\tau _{k}\left[ \begin{array}{cc} &{}p_1\\ &{}q_1 \end{array}\right] {\displaystyle \frac{z^2}{2}}+\tau _k\left[ \begin{array}{cc} &{}p_2\\ &{}q_2 \end{array}\right] z\bar{z}+......... \end{aligned}$$
(8.27)

Comparing the coefficients in (8.26) and using (8.27), we get

$$\begin{aligned}&H_{20}(0)=-g_{20}q(0)-\bar{g}_{02}\bar{q}(0)+2\tau _k\left[ \begin{array}{cc} &{}p_1\\ &{}q_1 \end{array}\right] \end{aligned}$$
(8.28)
$$\begin{aligned}&H_{11}(0)=-g_{11}q(0)-\bar{g}_{11}\bar{q}(0)+\tau _k\left[ \begin{array}{cc}&{}p_2\\ &{}q_2 \end{array}\right] \end{aligned}$$
(8.29)

Since \(\iota \omega _{0}\tau _{k}\) is the eigenvalue of \(A(0)\) corresponding to eigenvector \(q(0)\), then

$$\begin{aligned}&\{\iota \omega _{0}\tau _{k}I- \int _{-1}^0e^{\iota \omega _{0}\tau _{k}\theta }{\hbox {d}}\varsigma (\theta )\}q(0)=0 \quad {\hbox {and}} \\&\{-\iota \omega _{0}\tau _{k}I- \int _{-1}^0e^{-\iota \omega _{0}\tau _{k}\theta }{\hbox {d}}\varsigma (\theta )\}\bar{q}(0)=0. \end{aligned}$$

Substituting (8.22) and (8.28) into (8.24), we find

$$\begin{aligned} \{2\iota \omega _{0}\tau _{k}I-\int _{-1}^0e^{2\iota \omega _{0}\tau _{k}\theta }{\hbox {d}}\varsigma (\theta )\}E_{1} =2\tau _k\left[ \begin{array}{cc} &{}p_{1}\\ &{}q_{1} \end{array}\right] \end{aligned}$$

or

$$\begin{aligned} \left[ \begin{array}{cccc} &{}2\iota \omega _{0}-a_{10} &{} -a_{01}e^{-2\iota \omega \tau _0}\\ &{}-b_{10} &{} 2\iota \omega _{0}-b_{01} \end{array}\right] E_{1} =\left[ \begin{array}{cc} &{}2p_{1}\\ &{}2q_{1} \end{array}\right] \end{aligned}$$

or \(E_1=2\left[ \begin{array}{cc} &{}p_1 \\ &{}q_1 \end{array}\right] \left[ \begin{array}{cccc} &{}2\iota \omega _{0}-a_{10} &{} -a_{01}e^{-2\iota \omega \tau _0}\\ &{}-b_{10} &{} 2\iota \omega _{0}-b_{01} \end{array}\right] ^{-1}\)

Similarly substituting (8.23) and (8.29) into (8.25), we obtain

$$\begin{aligned} \left[ \begin{array}{cccc} &{} -a_{10} &{} -a_{01}\\ &{}-b_{10} &{} -b_{01} \end{array}\right] E_{2}=\left[ \begin{array}{cc}&{}p_2\\ &{}q_2 \end{array}\right] \end{aligned}$$

or

$$\begin{aligned} E_2=\left[ \begin{array}{cc}&{}p_2\\ &{}q_2 \end{array}\right] \left[ \begin{array}{cccc} &{} -a_{10} &{} -a_{01}\\ &{}-b_{10} &{} -b_{01} \end{array}\right] ^{-1} \end{aligned}$$

Thus, we can determine \(W_{20}(\theta )\), \(W_{11}(\theta )\) from (8.22), (8.23) and \(g_{21}\) can be computed from (8.15).

Finally, we can compute the following quantities:

$$\begin{aligned} \begin{aligned}&c_{1}(0)={\displaystyle \frac{\iota \left\{ g_{20}g_{11}-2|g_ {11}|^2-\frac{|g_{02}|^2}{3}\right\} }{2\omega _{0}\tau _{k}}+\frac{g_{21}}{2}} \\&\mu _{2}=-{\displaystyle \frac{Re\left\{ c_{1}(0)\right\} }{Re\left\{ \frac{{\hbox {d}}{\uplambda }(\tau _k)}{{\hbox {d}}\tau }\right\} }}, \\&\beta _2=2Re\left\{ c_1(0)\right\} , \\&T_{2}=-{\displaystyle \frac{\mathfrak {I}\{ c_1(0)\}+\mu _{2}\mathfrak {I}\left\{ \frac{{\hbox {d}}{\uplambda }(\tau _k)}{{\hbox {d}}\tau }\right\} }{\omega _{0}\tau _{k}}}, \quad k=0,1,2,..... \end{aligned} \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, A., Sharma, A.K. & Agnihotri, K. Analysis of a toxin producing phytoplankton–zooplankton interaction with Holling IV type scheme and time delay. Nonlinear Dyn 81, 13–25 (2015). https://doi.org/10.1007/s11071-015-1969-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-015-1969-5

Keywords

Mathematics Subject Classification

Navigation