Skip to main content
Log in

Robust adaptive neural control of flexible hypersonic flight vehicle with dead-zone input nonlinearity

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper presents adaptive dynamic surface control for the flexible model of hypersonic flight vehicle in the presence of unknown dynamics and input nonlinearity. By modeling the flexible coupling as disturbance of rigid body, based on the functional decomposition, the dynamics is divided into attitude subsystem and velocity subsystem. Flight path angle, pitch angle, and pitching rate are involved in the attitude subsystem. To eliminate the inherent problem of “explosion of complexity” in back-stepping, the dynamic surface control is investigated to construct the controller. Furthermore, direct neural control with robust design is proposed without estimating the control gain function and in this way the singularity problem could be avoided. In the last step of dynamic surface design, through the use of Nussbaum-type function, stable adaptive control is presented for the unknown dynamics with time- varying control gain function. The uniform ultimate boundedness stability of the closed-loop system is guaranteed. Simulation result shows the feasibility of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Ataei, A., Wang, Q.: Non-linear control of an uncertain hypersonic aircraft model using robust sum-of-squares method. IET Control Theory Appl. 6(2), 203–215 (2012)

    Article  MathSciNet  Google Scholar 

  2. Chen, M., Ge, S.S., Ren, B.: Adaptive tracking control of uncertain MIMO nonlinear systems with input constraints. Automatica 47(3), 452–465 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  3. Chen, W., Jiao, L.: Adaptive tracking for periodically time-varying and nonlinearly parameterized systems using multilayer neural networks. IEEE Trans. Neural Netw. 21(2), 345–351 (2010)

    Article  Google Scholar 

  4. Chen, W., Jiao, L., Li, J., Li, R.: Adaptive NN backstepping output-feedback control for stochastic nonlinear strict-feedback systems with time-varying delays. IEEE Trans. Syst. Man Cybern. 40(3), 939–950 (2010)

    Article  Google Scholar 

  5. Gao, Y., Wu, H., Wang, J., Guo, L.: Feedback control design with vibration suppression for flexible air-breathing hypersonic vehicles. Sci. China Inf. Sci. 57(3), 1–14 (2014)

    Article  MATH  Google Scholar 

  6. Ge, S.S., Wang, J.: Robust adaptive tracking for time-varying uncertain nonlinear systems with unknown control coefficients. IEEE Trans. Automat. Control 48(8), 1463–1469 (2003)

    Article  MathSciNet  Google Scholar 

  7. Hu, C., Liu, Y.: Fuzzy adaptive nonlinear control based on dynamic surface control for hypersonic vehicle. Control Decis. 28(12), 1849–1854 (2013)

    Google Scholar 

  8. Hu, X., Wu, L., Hu, C., Gao, H.: Adaptive fuzzy integral sliding mode control for flexible air-breathing hypersonic vehicles subject to input nonlinearity. J. Aerosp. Eng. 26(4), 721–734 (2011)

    Article  MathSciNet  Google Scholar 

  9. Huang, J.T.: Global tracking control of strict-feedback systems using neural networks. IEEE Trans Neural Netw Learn Syst 23(11), 1714–1725 (2012)

    Article  Google Scholar 

  10. Ibrir, S., Xie, W.F., Su, C.Y.: Adaptive tracking of nonlinear systems with non-symmetric dead-zone input. Automatica 43(3), 522–530 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  11. Li, H., Si, Y., Wu, L., Hu, X., Gao, H.: Guaranteed cost control with poles assignment for a flexible air-breathing hypersonic vehicle. Int. J. Syst. Sci. 42(5), 863–876 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  12. Li, Y., Tong, S., Li, T.: Observer-based adaptive fuzzy tracking control of MIMO stochastic nonlinear systems with unknown control direction and unknown dead-zones. IEEE Trans. Fuzzy Syst. (2014). doi:10.1109/TFUZZ.2014.2348017

  13. Li, Y., Tong, S., Liu, Y., Li, T.: Adaptive fuzzy robust output feedback control of nonlinear systems with unknown dead zones based on a small-gain approach. IEEE Trans. Fuzzy Syst. 22(1), 164–176 (2014)

    Article  Google Scholar 

  14. Liu, Y., Chen, C.P., Wen, G.X., Tong, S.: Adaptive neural output feedback tracking control for a class of uncertain discrete-time nonlinear systems. IEEE Trans. Neural Netw. 22(7), 1162–1167 (2011)

    Article  Google Scholar 

  15. Liu, Y., Tang, L., Tong, S., Chen, C.P.: Adaptive NN controller design for a class of nonlinear MIMO discrete-time systems. IEEE Trans. Neural Netw. Learn. Syst. (2014). doi:10.1109/TNNLS.2014.2330336

  16. Liu, Y., Tong, S.: Adaptive nn tracking control of uncertain nonlinear discrete-time systems with nonaffine dead-zone input. IEEE Trans. Cybern. (2014). doi:10.1109/TCYB.2014.2329495

  17. Nussbaum, R.D.: Some remarks on a conjecture in parameter adaptive control. Syst. Control Lett. 3(5), 243–246 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  18. Pan, Y.P., Yu, H.Y., Er, M.J.: Adaptive neural PD control with semiglobal asymptotic stabilization guarantee. IEEE Trans. Neural Netw. Learn. Syst. 25(12), 2264–2274 (2014)

  19. Pan, Y.P., Zhou, Y., Sun, T.R., Er, M.J.: Composite adaptive fuzzy H\(^{\infty }\) tracking control of uncertain nonlinear systems. Neurocomputing, 99, 15–24 (2013)

  20. Parker, J., SERRANIT, A., Yurkovich, S., Bolender, M., DOMAN, D.: Control-oriented modeling of an air-breathing hypersonic vehicle. J. Guid. Control. Dyn. 30(3), 856–869 (2007)

    Article  Google Scholar 

  21. Phan, P.A., Gale, T.: Two-mode adaptive fuzzy control with approximation error estimator. IEEE Trans. Fuzzy Syst. 15(5), 943–955 (2007)

    Article  Google Scholar 

  22. Polycarpou, M.M.: Stable adaptive neural control scheme for nonlinear systems. IEEE Trans. Autom. Control 41(3), 447–451 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  23. Sanner, R., Slotine, J.: Gaussian networks for direct adaptive control. IEEE Trans. Neural Netw. 3(6), 837–863 (1992)

    Article  Google Scholar 

  24. Tong, S., Huo, B., Li, Y.: Observer-based adaptive decentralized fuzzy fault-tolerant control of nonlinear large-scale systems with actuator failures. IEEE Trans. Fuzzy Syst. 22(1), 1–15 (2014)

    Article  Google Scholar 

  25. Wang, N., Wu, H.N., Guo, L.: Coupling-observer-based nonlinear control for flexible air-breathing hypersonic vehicles. Nonlinear Dyn. 78(3), 2141–2159 (2014)

    Article  MathSciNet  Google Scholar 

  26. Wang, X., Su, C., Hong, H.: Robust adaptive control of a class of nonlinear systems with unknown dead-zone. Automatica 40(3), 407–413 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  27. Wilcox, Z., MacKunis, W., Bhat, S., Lind, R., Dixon, W.: Lyapunov-based exponential tracking control of a hypersonic aircraft with aerothermoelastic effects. J. Guid. Control Dyn. 33(4), 1213–1224 (2010)

  28. Wu, H., Liu, Z., Guo, L.: Robust \(l_{\infty }\)-gain fuzzy disturbance observer-based control design with adaptive bounding for a hypersonic vehicle. IEEE Trans. Fuzzy Syst. 22(6), 1401–1412 (2014)

    Article  Google Scholar 

  29. Wu, J., Chen, W., Li, J.: Fuzzy-approximation-based global adaptive control for uncertain strict-feedback systems with a priori known tracking accuracy. Fuzzy Sets Syst. (2014). doi:10.1016/j.fss.2014.10.009

  30. Wu, J., Chen, W., Zhao, D., Li, J.: Globally stable direct adaptive backstepping NN control for uncertain nonlinear strict-feedback systems. Neurocomputing 122, 134–147 (2013)

    Article  Google Scholar 

  31. Wu, J., Li, J., Chen, W.: Semi-globally/globally stable adaptive NN backstepping control for uncertain MIMO systems with tracking accuracy known a priori. J. Frankl. Inst. 351(12), 5274–5309 (2014)

  32. Xu, B., Gao, D., Wang, S.: Adaptive neural control based on hgo for hypersonic flight vehicles. Sci. China Inf. Sci. 54(3), 511–520 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  33. Xu, B., Huang, X., Wang, D., Sun, F.: Dynamic surface control of constrained hypersonic flight models with parameter estimation and actuator compensation. Asian J. Control 16(1), 162–174 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  34. Xu, B., Shi, Z.: An overview on flight dynamics and control approaches for hypersonic vehicles. Sci. China Inf. Sci., doi:10.1007/s11432-014-5273-7

  35. Xu, B., Shi, Z., Yang, C., Sun, F.: Composite neural dynamic surface control of a class of uncertain nonlinear systems in strict-feedback form. IEEE Trans. Cybern. 14(12), 2626–2634 (2014)

    Article  Google Scholar 

  36. Xu, B., Shi, Z., Yang, C., Wang, S.: Neural control of hypersonic flight vehicle model via time-scale decomposition with throttle setting constraint. Nonlinear Dyn. 73(3), 1849–1861 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  37. Xu, B., Sun, F., Yang, C., Gao, D., Ren, J.: Adaptive discrete-time controller design with neural network for hypersonic flight vehicle via back-stepping. Int. J. Control 84(9), 1543–1552 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  38. Xu, B., Yang, C., Shi, Z.: Reinforcement learning output feedback nn control using deterministic learning technique. IEEE Trans. Neural Netw. Learn. Syst. 25(3), 635–641 (2014)

    Article  Google Scholar 

  39. Xu, H., Mirmirani, M., Ioannou, P.: Adaptive sliding mode control design for a hypersonic flight vehicle. J. Guid. Control Dyn. 27(5), 829–838 (2004)

    Article  Google Scholar 

  40. Yang, J., Li, S., Sun, C., Guo, L.: Nonlinear-disturbance-observer-based robust flight control for airbreathing hypersonic vehicles. IEEE Trans. Aerospace Electron. Syst. 49(2), 1263–1275 (2013)

    Article  Google Scholar 

  41. Ye, X., Jiang, J.: Adaptive nonlinear design without a priori knowledge of control directions. IEEE Trans. Autom. Control 43(11), 1617–1621 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  42. Zong, Q., Wang, F., Tian, B., Su, R.: Robust adaptive dynamic surface control design for a flexible air-breathing hypersonic vehicle with input constraints and uncertainty. Nonlinear Dyn. 78(1), 289–315 (2014)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

This work was supported by National Science Foundation of China (Grant Nos: 61304098, 61134004), Natural Science Basic Research Plan in Shaanxi Province (Grant No: 2014JQ8326), Fundamental Research Funds for the Central Universities (Grant No. 3102015AX001) and Aerospace Support Foundation (Grant No: 2013-HT-XGD-12).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, B. Robust adaptive neural control of flexible hypersonic flight vehicle with dead-zone input nonlinearity. Nonlinear Dyn 80, 1509–1520 (2015). https://doi.org/10.1007/s11071-015-1958-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-015-1958-8

Keywords

Navigation