Skip to main content
Log in

Symmetry breaking and chaos-induced imbalance in planetary gears

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The goal of the present paper was a complete analysis of the dynamic scenario of planetary gears. A lumped mass two-dimensional model is adopted; the model takes into account: time-varying stiffness; nonsmooth nonlinearity due to the backlash, i.e., teeth contact loosing; and bearing compliance. The time-varying meshing stiffness is evaluated by means of a nonlinear finite element model, which allows an accurate evaluation of global and local teeth deformation. The dynamic model is validated by comparisons with the most authoritative literature: linear natural frequencies and nonlinear response. The dynamic scenario is analyzed over a reasonable engineering range in terms of rotation speed and torque. The classical amplitude–frequency diagrams are accompanied by bifurcation diagrams, and for specific regimes, the spectral and topological properties of the response are discussed. Periodic, quasiperiodic and chaotic regimes are found; nonsmooth bifurcations lead period one to period two trajectories. It is found that the bearing compliance can influence the natural frequencies combination magnifying the modal interactions due to internal resonances and greatly enlarging the chaotic regions. It is evidenced that the chaotic response indices a symmetry breaking in the dynamical systems. The physical consequence is that the planetary gearbox under investigation, which is perfectly balanced for each position, can suffer of a big dynamic imbalance when chaotic regimes take place; such imbalance gives rise to alternate and unexpected high-level stresses on bearings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

\(x,y\) :

\(x,y\)-translational coordinate (\(\upmu \hbox {m}\))

\(\varTheta \) :

Rotational coordinate (rad)

\(k_{s}\) :

Translational sun bearing stiffness (equal for \(x,y\)) (N/m)

\(\varPsi _{n}\) :

Angular position of the \(n\)th-planet with respect to the \(x\)-axis (rad)

\(\alpha _{s}\) :

Working pressure angle for sun–planet mesh (rad)

\(\alpha _{r}\) :

Working pressure angle for planet–ring mesh (rad)

\(r_{bs},r_{bn},r_{br}\) :

Base radii of (sun, \(n\)th-planet, ring) (m)

\(k_{sn}\) :

Mesh stiffness of sun–\(n\)th-planet (N/m)

\(k_{su}\) :

Torsional sun bearing stiffness (\(\hbox {N}\,\hbox {m/rad}\))

\(k_{r}\) :

Translational ring bearing stiffness (equal for \(x,y\)) (N/m)

\(k_{rn}\) :

Mesh stiffness of \(n\)th-planet–ring (N/m)

\(r_{c}\) :

Carrier radius (sun–planet center distance) (m)

\(k_{p}\) :

Translational planet bearing stiffness (equal for \(x,y\)) (N/m)

\(k_{pu}\) :

Rotational planet bearing stiffness (in this paper \(k_{pu}=0\)) (\(\hbox {N}\,\hbox {m/rad}\))

\(k_{c}\) :

Translational carrier bearing stiffness (equal for \(x,y\)) (N/m)

\(k_{cu}\) :

Rotational carrier bearing stiffness (\(\hbox {N}\,\hbox {m/rad}\))

\(M_{s}\) :

Sun mass (kg)

\(\theta _{s}\) :

Rotational coordinate of sun (rad)

\(C_{s}\) :

Translational sun bearing–damping (equal for \(x,y\)) (\(\hbox {N}\,\hbox {s/m}\))

\(C_{sn}\) :

Mesh damping of sun–\(n\)th-planet (\(\hbox {N}\,\hbox {s/m}\))

\(b_{s}\) :

Sun–planet backlash (m)

\(I_{s}\) :

Sun moment of inertia (\(\hbox {kg}\,\hbox {m}^{2}\))

\(C_{su}\) :

Torsional sun bearing–damping (\(\hbox {N}\,\hbox {m}\,\hbox {s/rad}\))

\(M_{r}\) :

Ring mass (kg)

\(\theta _{r}\) :

Rotational coordinate of ring (rad)

\(C_{r}\) :

Translational ring bearing–damping (equal for \(x,y\)) (\(\hbox {N}\,\hbox {s/m}\))

\(C_{rn}\) :

Mesh damping of \(n\)th-planet–ring (\(\hbox {N}\,\hbox {s/m}\))

\(\rho _{i}\) :

Dimensionless damping for the \(i\)th mode

\(b_{r}\) :

Planet–ring backlash (m)

\(I_{r}\) :

Ring moment of inertia (\(\hbox {kg}\,\hbox {m}^{2}\))

\(C_{ru}\) :

Torsional ring bearing–damping (\(\hbox {N}\,\hbox {m}\,\hbox {s/rad}\))

\(z\) :

Gear numbers of teeth

\(s\) :

Sun

\(n\) :

\(n\)th-planet

\(c\) :

Carrier

\(r\) :

Ring (annulus)

References

  1. Ambarisha, V.K., Parker, R.G.: Nonlinear dynamics of planetary gears using analytical and finite element models. J. Sound Vib. 302, 577–595 (2007)

    Article  Google Scholar 

  2. Bahk, C.J., Parker, R.G.: Analytical solution for the nonlinear dynamics of planetary gears. J. Comput. Nonlinear Dyn. 6(2), 1–15 (2011)

    Article  Google Scholar 

  3. Amabili, M., Rivola, A.: Dynamic analysis of spur gear pairs: steady-state responde and stability of the SDOF model with time-varying meshing damping. Mech. Syst. Signal Process. 11(3), 375–390 (1997)

    Article  Google Scholar 

  4. Wang, Y., Cheung, H.M.E., Zhang, W.J.: 3D dynamic modelling of spatial geared systems. Nonlinear Dyn. 26(4), 371–391 (2001)

    Article  MATH  Google Scholar 

  5. Faggioni, M., Avramov, K., Pellicano, F., Reshetnikova, S.N.: Nonlinear oscillations and stability of gear pair. J. Mech. Eng. (Ukraine) 4, 40–45 (2005)

    Google Scholar 

  6. Bonori, G., Pellicano, F.: Non-smooth dynamics of spur gears with manufacturing errors. J. Sound Vib. 306, 271–283 (2007)

    Article  Google Scholar 

  7. Liu, G., Parker, R.G.: Nonlinear dynamics of idler gear systems. Nonlinear Dyn. 53(4), 345–367 (2008)

    Article  MATH  Google Scholar 

  8. Cunliffe, F., Smith, J.D., Welbourn, D.B.: Dynamic tooth loads in epicyclic gears. J. Manuf. Sci. Eng. 96(2), 578–584 (1974)

    Google Scholar 

  9. Botman, M.: Epicyclic gear vibrations. J. Manuf. Sci. Eng. 98(3), 811–815 (1976)

    Google Scholar 

  10. Kahraman, A.: Planetary gear train dynamics. J. Mech. Des. 116(3), 713–720 (1994)

    Article  Google Scholar 

  11. Kahraman, A.: Natural-modes of planetary gear trains. J. Sound Vib. 173(1), 125–130 (1994)

    Article  Google Scholar 

  12. Kahraman, A.: Load sharing characteristics of planetary transmissions. Mech. Mach. Theory 29(8), 1151–1165 (1994)

    Article  Google Scholar 

  13. Velex, P., Flamand, L.: Dynamic response of planetary trains to mesh parametric excitations. J. Mech. Des. 118, 7–14 (1996)

    Article  Google Scholar 

  14. Lin, J., Parker, R.G.: Analytical characterization of the unique properties of planetary gear free vibration. J. Vib. Acoust. 121, 316–321 (1999)

    Article  Google Scholar 

  15. Lin, J., Parker, R.G.: Structured vibration characteristics of planetary gears with unequally spaced planets. J. Sound Vib. 233, 921–928 (2000)

    Article  Google Scholar 

  16. Faggioni, M., Samani, F.S., Bertacchi, G., Pellicano, F.: Dynamic optimization of spur gears. Mech. Mach. Theory 46, 544–557 (2011)

    Article  MATH  Google Scholar 

  17. Bonori, G., Barbieri, M., Pellicano, F.: Optimum profile modifications of spur gears by means of genetic algorithms. J. Sound Vib. 313(3–5), 603–616 (2008)

    Article  Google Scholar 

  18. Walha, L., Fakhfakh, T., Haddar, M.: Nonlinear dynamics of a two-stage gear system with mesh stiffness fluctuation, bearing flexibility and backlash. Mech. Mach. Theory 44, 1058–1069 (2009)

    Article  MATH  Google Scholar 

  19. Parker, R.G., Lin, J.: Mesh phasing relationships in planetary and epicyclic gears. J. Mech. Des. 126, 365–370 (2004)

    Article  Google Scholar 

  20. Lin, J., Parker, R.G.: Planetary gear parametric instability caused by mesh stiffness variation. J. Sound Vib. 249(1), 129–145 (2002)

    Article  Google Scholar 

  21. Parker, R.G.: A physical explanation for the effectiveness of planet phasing to suppress planetary gear vibration. J. Sound Vib. 236(4), 561–573 (2000)

    Article  Google Scholar 

  22. Ambarisha, V.K., Parker, R.G.: Suppression of planet mode response in planetary gear dynamics through mesh phasing. J. Vib. Acoust. 128, 133–142 (2006)

    Article  Google Scholar 

  23. Wu, X., Parker, R.G.: Modal properties of planetary gears with an elastic continuum ring gear. J. Appl. Mech. 75(3), 031014 (2008)

    Article  Google Scholar 

  24. Kiracofe, D.R., Parker, R.G.: Structured vibration modes of general compound planetary gear systems. J. Vib. Acoust. 129, 1–16 (2007)

    Article  Google Scholar 

  25. Guo, Y., Parker, R.G.: Purely rotational model and vibration modes of compound planetary gears. Mech. Mach. Theory 45(3), 365–377 (2010)

    Article  MATH  Google Scholar 

  26. Guo, Y., Parker, R.G.: Analytical determination of mesh phase relations in general compound planetary gears. Mech. Mach. Theory 46(12), 1869–1887 (2011)

    Article  Google Scholar 

  27. Al-shyyab, A., Kahraman, A.: A non-linear dynamic model for planetary gear sets. J. Multi-body Dyn. 221(4), 567–576 (2007)

    Google Scholar 

  28. Guo, Y., Parker, R.G.: Dynamic modeling and analysis of a spur planetary gear involving tooth wedging and bearing clearance nonlinearity. Eur. J. Mech. A. Solids 29, 1022–1033 (2010)

  29. Sun, T., Hu, H.Y.: Nonlinear dynamics of a planetary gear system with multiple clearances. Mech. Mach. Theory 38(12), 1371–1390 (2003)

  30. Chaari, F., Fakhfakh, T., Haddar, M.: Dynamic analysis of a planetary gear failure caused by tooth pitting and cracking. J. Fail. Anal. Prev. 2, 73–78 (2006)

  31. Zhe, C., Niaoqing, H., Fengshou, G., Guojun, Q.: Pitting damage levels estimation for planetary gear sets based on model simulation and grey relational analysis. Trans. Can. Soc. Mech. Eng. 35(3), 403–417 (2011)

  32. Chen, Z., Shao, Y.: Dynamic simulation of planetary gear with tooth root crack in ring gear. Eng. Fail. Anal. 31, 8–18 (2013)

    Article  MATH  Google Scholar 

  33. August, R., Kasuba, R., Frater, J.L., Pintz, A.: Dynamics of planetary gear trains, NASA Contractor Report 3793, Lewis Research Center (1984)

  34. Gu, X., Velex, P.: A dynamic model to study the influence of planet position errors in planetary gears. J. Sound Vib. 331(20), 4554–4574 (2012)

    Article  Google Scholar 

  35. Gu, X., Velex, P.: On the dynamic simulation of eccentricity errors in planetary gears. Mech. Mach. Theory 61, 14–29 (2013)

    Article  Google Scholar 

  36. Li, S., Wu, Q., Zhang, Z.: Bifurcation and chaos analysis of multistage planetary gear train. Nonlinear Dyn. 75(1–2), 217–233 (2014)

    Article  MathSciNet  Google Scholar 

  37. Pellicano, F., Vestroni, F.: Complex dynamics of high-speed axially moving systems. J. Sound Vib. 258(1), 31–34 (2002)

    Article  Google Scholar 

  38. Barbieri, M., Zippo, A., Pellicano, F.: Adaptive grid-size finite element modeling of helical gear pairs. Mech. Mach. Theory 82, 17–32 (2014)

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Lab INTERMECH MO.RE. (HIMECH District, Emilia Romagna Region) for supporting the research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Pellicano.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Masoumi, A., Pellicano, F., Samani, F.S. et al. Symmetry breaking and chaos-induced imbalance in planetary gears. Nonlinear Dyn 80, 561–582 (2015). https://doi.org/10.1007/s11071-014-1890-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-014-1890-3

Keywords

Navigation