Skip to main content
Log in

Optimal scale polynomial interpolation technique for obtaining periodic solutions to the Duffing oscillator

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

A novel optimal scale polynomial interpolation method (OSPIM) is proposed to attack the Duffing oscillator. This method is based on the ideas of multi-scaling and equilibrated matrix, such that the condition number of the coefficient matrix of the polynomial interpolation is minimized. The OSPIM can eliminate the Runge phenomenon, which occurs in the conventional polynomial interpolation, and is well suited for solving nonlinear oscillatory systems. In addition, we further alleviate the ill-posedness of polynomial interpolation by proposing a half-order technique, with which one can use a \(m\)-order polynomial to interpolate as many as \(2m+1\) points. We then employ the half-order OSPIM, i.e., OSPIM(H), as a trial function in conjunction with the simple point-collocation method, to solve the nonlinear Duffing equation. Moreover, the differential transformation method is used for the first time to solve a forced Duffing oscillator to compare with the present method. Finally, illustrative examples verify the accuracy and efficiency of the present method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Abdelkefi, A., Ghommem, M.: Model reduction of nonlinear aeroelastic systems experiencing hopf bifurcation. J. Model. Simul. Identif. Control 1, 57–77 (2013)

    Google Scholar 

  2. Abdelkefi, A., Nayfeh, A.H., Hajj, M.R.: Effects of nonlinear piezoelectric coupling on energy harvesters under direct excitation. Nonlinear Dyn. 67(2), 1221–1232 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  3. Abdelkefi, A., Nayfeh, A.H., Hajj, M.R.: Global nonlinear distributed-parameter model of parametrically excited piezoelectric energy harvesters. Nonlinear Dyn. 67(2), 1147–1160 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  4. Abdelkefi, A., Nayfeh, A.H., Hajj, M.R.: Modeling and analysis of piezoaeroelastic energy harvesters. Nonlinear Dyn. 67(2), 925–939 (2012)

    Article  MathSciNet  Google Scholar 

  5. Abdelkefi, A., Vasconcellos, R., Nayfeh, A.H., Hajj, M.R.: An analytical and experimental investigation into limit-cycle oscillations of an aeroelastic system. Nonlinear Dyn. 71(1–2), 159–173 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  6. Bauer, F.L.: Optimally scaled matrices. Num. Math. 5, 73–87 (1963)

    Article  MATH  Google Scholar 

  7. Bechkermann, B.: The condition number of real vandermonde, krylov and positive definite hankel matrices. Num. Math. 85, 553–577 (2000)

    Article  Google Scholar 

  8. Beran, P.S., Strganac, T.W., Kim, K., Nichkawde, C.: Studies of store-induced limit-cycle oscillations using a model with full system nonlinearities. Nonlinear Dyn. 37(4), 323–339 (2004)

    Article  MATH  Google Scholar 

  9. Dai, H.H., Schnoor, M., Atluri, S.N.: A simple collocation scheme for obtaining the periodic solutions of the duffing equation, and its equivalence to the high dimensional harmonic balance method: subharmonic oscillations. Comput. Model. Eng. & Sci. 84(5), 459–497 (2012)

    MathSciNet  Google Scholar 

  10. Dai, H.H., Yue, X.K., Yuan, J.P.: A time domain collocation method for obtaining the third superharmonic solutions to the duffing oscillator. Nonlinear Dyn. 73(1–2), 593–609 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  11. Dai, H.H., Yue, X.K., Yuan, J.P., Atluri, S.N.: A time domain collocation method for studying the aeroelasticity of a two dimensional airfoil with a structural nonlinearity. J. Comput. Phys. (2014). doi:10.1016/j.jcp.2014.03.063

  12. Daqaq, M.F.: On intentional introduction of stiffness nonlinearities for energy harvesting under white gaussian excitations. Nonlinear Dyn. 69(3), 1063–1079 (2012)

    Article  MathSciNet  Google Scholar 

  13. Dowell, E.H.: Nonlinear oscillations of a fluttering plate. I. AIAA J. 4(7), 1267–1275 (1966)

    Article  Google Scholar 

  14. Dowell, E.H.: Nonlinear oscillations of a fluttering plate. II. AIAA J. 5(10), 1856–1862 (1967)

    Article  Google Scholar 

  15. Gohberg, I., Olshevsky, V.: The fast generalized parker-traub algorithm for inversion of vandermonde and related matrices. J. Complex. 13, 208–234 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  16. Hayashi, C.: Nonlinear oscillations in physical systems. McGraw-Hill, New York (1964)

    MATH  Google Scholar 

  17. Junkins, J.L., Jacobson, I.D.: A nonlinear oscillator analog of rigid body dynamics. Celest. Mech. 7, 398–407 (1973)

    Article  MATH  Google Scholar 

  18. Li, R.C.: Asymptotically optimal lower bounds for the condition number of a real vandermonde matrix. SIAM J. Matrix Anal. Appl. 28, 829–844 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  19. Liu, C.S., Atluri, S.N.: A highly accurate technique for interpolations using very high-order polynomials, and its applications to some ill-posed linear problems. CMES Comput. Model. Eng. & Sci. 43, 253–276 (2009)

    MATH  MathSciNet  Google Scholar 

  20. Liu, C.S., Atluri, S.N.: Simple “residual-norm”based algorithms, for the solution of a large system of non-linear algebraic equations, which converge faster than the Newton’s method. CMES Comput. Model. Eng. & Sci. 71(3), 279–304 (2011)

    MATH  MathSciNet  Google Scholar 

  21. Liu, C.S., Hong, H.K., Atluri, S.N.: Novel algorithms based on the conjugate gradient method for inverting ill-conditioned matrices, and a new regularization method to solve ill-posed linear systems. CMES Comput. Model. Eng. & Sci. 60, 279–308 (2010)

    MATH  MathSciNet  Google Scholar 

  22. Liu, L., Thomas, J.P., Dowell, E.H., Attar, P., Hall, K.C.: A comparison of classical and high dimensional harmonic balance approaches for a Duffing oscillator. J. Comput. Phys. 215, 298–320 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  23. Nayfeh, A.H., Mook, D.T.: Nonlinear Oscillations. Wiley, New York (1979)

    MATH  Google Scholar 

  24. Nuhait, A.O., Mook, D.T.: Aeroelastic behavior of flat plates moving near the ground. J. Aircr. 47(2), 464–474 (2010)

    Article  Google Scholar 

  25. Quarteroni, A., Sacco, R., Saleri, F.: Numerical Mathematics. Springer, Berlin (2000)

    Google Scholar 

  26. Stoker, J.J.: Nonlinear Vibrations. Interscience, New York (1950)

    MATH  Google Scholar 

  27. Sturrock, P.A.: Non-linear effects in electron plasmas. Proc. R. Soc. Lond. A 242(1230), 277–299 (1957)

    Google Scholar 

  28. Thomas, J.P., Dowell, E.H., Hall, K.C.: Nonlinear inviscid aerodynamic effects on transonic divergence, flutter, and limit-cycle oscillations. AIAA J. 40, 638–646 (2002)

    Article  Google Scholar 

  29. Tseng, W.Y., Dugundji, J.: Nonlinear vibrations of a beam under harmonic excitation. J. Appl. Mech. 37(2), 292–297 (1970)

    Article  MATH  Google Scholar 

  30. Zhou, J.K.: Differential Transformation and Its Applications for Electrical Circuits. Huazhong University Press, Wuhan (1986). in Chinese

    Google Scholar 

Download references

Acknowledgments

This study is financially supported by the Doctorate Foundation and the Excellent Doctorate Foundation of Northwestern Polytechnical University (CX201305), and the Chinese National Science Foundation (11172235).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong-Hua Dai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yue, XK., Dai, HH. & Liu, CS. Optimal scale polynomial interpolation technique for obtaining periodic solutions to the Duffing oscillator. Nonlinear Dyn 77, 1455–1468 (2014). https://doi.org/10.1007/s11071-014-1391-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-014-1391-4

Keywords

Navigation