Skip to main content
Log in

New results on stability and stabilization of a class of nonlinear fractional-order systems

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The asymptotic stability and stabilization problem of a class of fractional-order nonlinear systems with Caputo derivative are discussed in this paper. By using of Mittag–Leffler function, Laplace transform, and the generalized Gronwall inequality, a new sufficient condition ensuring local asymptotic stability and stabilization of a class of fractional-order nonlinear systems with fractional-order α:1<α<2 is proposed. Then a sufficient condition for the global asymptotic stability and stabilization of such system is presented firstly. Finally, two numerical examples are provided to show the validity and feasibility of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)

    MATH  Google Scholar 

  2. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Application of Fractional Differential Equations. Elsevier, New York (2006)

    Google Scholar 

  3. Hilfer, R.: Applications of Fractional Calculus in Physics. World Scientific, Singapore (2000)

    Book  MATH  Google Scholar 

  4. Caputo, M.: Linear models of dissipation whose Q is almost frequency independent, II. Geophys. J. R. Astron. Soc. 13, 529–539 (1967)

    Article  Google Scholar 

  5. Naber, M.: Time fractional Schrödinger equation. J. Math. Phys. 45, 3339–3352 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  6. Ryabov, Y., Puzenko, A.: Damped oscillation in view of the fractional oscillator equation. Phys. Rev. B 66, 184–201 (2002)

    Article  Google Scholar 

  7. Das, S., Gupta, P.: A mathematical model on fractional Lotka–Volterra equations. J. Theor. Biol. 277, 1–6 (2011)

    Article  MathSciNet  Google Scholar 

  8. Burov, S., Barkai, E.: Fractional Langevin equation: overdamped, underdamped, and critical behaviors. Phys. Rev. E 78, 031112 (2008)

    Article  MathSciNet  Google Scholar 

  9. Matignon, D.: Stability results for fractional differential equations with applications. In: Proc. IMACS-IEEE CESA, pp. 963–968 (1996)

    Google Scholar 

  10. Lu, J.G., Chen, Y.Q.: Robust stability and stabilization of fractional-order interval systems with the fractional order α: the 0<α<1 case. IEEE Trans. Autom. Control 55, 152–158 (2010)

    Article  Google Scholar 

  11. Lu, J.G., Chen, G.R.: Robust stability and stabilization of fractional-order interval systems: an LMI approach. IEEE Trans. Autom. Control 54, 1294–1299 (2009)

    Article  Google Scholar 

  12. Tavazoe, M.S., Haeri, M.: A note on the stability of fractional order systems. Math. Comput. Simul. 79, 1566–1576 (2009)

    Article  Google Scholar 

  13. Ahn, H.S., Chen, Y.Q.: Necessary and sufficient stability condition of fractional-order interval linear systems. Automatica 44, 2985–2988 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  14. Deng, W.H., Li, C.P., Lu, J.H.: Stability analysis of linear fractional differential system with multiple time delays. Nonlinear Dyn. 48, 409–416 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  15. Kheirizad, I., Tavazoei, M.S., Jalali, A.A.: Stability criteria for a class of fractional order systems. Nonlinear Dyn. 61, 153–161 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  16. Li, C.P., Zhang, F.R.: A survey on the stability of fractional differential equations. Eur. Phys. J. Spec. Top. 193, 27–47 (2011)

    Article  Google Scholar 

  17. Li, Y., Chen, Y.Q., Podlubny, I.: Mittag–Leffler stability of fractional order nonlinear dynamic systems. Automatica 45, 1965–1969 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  18. Sadati, S.J., Baleanu, D., Ranjbar, D.A., Ghaderi, R., Abdeljawad, T.: Mittag–Leffler stability theorem for fractional nonlinear systems with delay. Abstr. Appl. Anal. 2010, 108651 (2010)

    Article  MathSciNet  Google Scholar 

  19. Liu, S., Li, X.Y., Jiang, W., Zhou, X.F.: Mittag–Leffler stability of nonlinear fractional neutral singular systems. Commun. Nonlinear Sci. Numer. Simul. 10, 3961–3966 (2012)

    Article  MathSciNet  Google Scholar 

  20. Delavari, H., Baleanu, D., Sadati, J.: Stability analysis of Caputo fractional-order nonlinear systems revisited. Nonlinear Dyn. 67, 2433–2439 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  21. Wen, X.J., Wu, Z.M., Lu, J.G.: Stability analysis of a class of nonlinear fractional-order systems. IEEE Trans. Circuits Syst. II, Express Briefs 55, 1178–1182 (2008)

    Article  Google Scholar 

  22. Deng, W.H.: Smoothness and stability of the solutions for nonlinear fractional differential equations. Nonlinear Anal. 72, 1768–1777 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  23. Chen, L.P., Chai, Y., Wu, R.C., Yang, J.: Stability and stabilization of a class of nonlinear fractional-order systems with Caputo derivative. IEEE Trans. Circuits Syst. II, Express Briefs 59, 602–606 (2012)

    Article  Google Scholar 

  24. Zhao, L.D., Hu, J.B., Fang, J.A., Zhang, W.B.: Studying on the stability of fractional-order nonlinear system. Nonlinear Dyn. 70, 475–479 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  25. Li, C.P., Zhao, Z.G., Chen, Y.Q.: Numerical approximation of nonlinear fractional differential equations with subdiffusion and superdiffusion. Comput. Math. Appl. 62, 855–875 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  26. De la Sen, M.: About robust stability of Caputo linear fractional dynamic systems with time delays through fixed point theory. Fixed Point Theory Appl. 2011, 867932 (2011)

    Article  Google Scholar 

  27. Ye, H., Gao, J., Ding, Y.: A generalized Gronwall inequality and its application to a fractional differential equation. J. Math. Anal. Appl. 328, 1075–1081 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  28. Deng, W.H.: Numerical algorithm for the time fractional Fokker–Planck equation. J. Comput. Phys. 227, 1510–1522 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  29. Lü, J., Chen, G., Cheng, D.: A new chaotic system and beyond: the generalized Lorenz-like system. Int. J. Bifurc. Chaos Appl. Sci. Eng. 14, 1507–1537 (2004)

    Article  MATH  Google Scholar 

  30. Lu, J.G.: Chaotic dynamics of the fractional-order Lu system and its synchronization. Phys. Lett. A 354, 305–311 (2006)

    Article  Google Scholar 

  31. Grigorenko, I., Grigorenko, E.: Chaotic dynamics of the fractional Lorenz system. Phys. Rev. Lett. 91, 034101 (2003)

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the referees and the editor for their valuable comments and suggestions. This work was supported by the National Natural Science Funds of China for Distinguished Young Scholar under Grant (No. 50925727), the National Natural Science Foundation of China (No. 61374135), the National Defense Advanced Research Project Grant (No. C1120110004, 9140 A27020211DZ5102), the Key Grant Project of Chinese Ministry of Education under Grant (No. 313018), the Fundamental Research Funds for the Central Universities (No. 2012HGCX0003), the Natural Science Foundation of Anhui Province (No. 11040606M12), and the 211 project of Anhui University (No. KJJQ1102).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liping Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, L., He, Y., Chai, Y. et al. New results on stability and stabilization of a class of nonlinear fractional-order systems. Nonlinear Dyn 75, 633–641 (2014). https://doi.org/10.1007/s11071-013-1091-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-013-1091-5

Keywords

Navigation