Skip to main content
Log in

No-chatter variable structure control for fractional nonlinear complex systems

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper concerns the problem of robust control of uncertain fractional-order nonlinear complex systems. After establishing a simple linear sliding surface, the sliding mode theory is used to derive a novel robust fractional control law for ensuring the existence of the sliding motion in finite time. We use a nonsmooth positive definitive function to prove the stability of the controlled system based on the fractional version of the Lyapunov stability theorem. In order to avoid the chattering, which is inherent in conventional sliding mode controllers, we transfer the sign function of the control input into the first derivative of the control signal. The proposed sliding mode approach is also applied for control of a class of nonlinear fractional-order systems via a single control input. Simulation results indicate that the proposed fractional variable structure controller works well for stabilization of hyperchaotic and chaotic complex fractional-order nonlinear systems. Moreover, it is revealed that the control inputs are free of chattering and practical.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Aghababa, M.P., Khanmohammadi, S., Alizadeh, G.: Finite-time synchronization of two different chaotic systems with unknown parameters via sliding mode technique. Appl. Math. Model. 35, 3080–3091 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  2. Aghababa, M.P., Heydari, A.: Chaos synchronization between two different chaotic systems with uncertainties, external disturbances, unknown parameters and input nonlinearities. Appl. Math. Model. 36, 1639–1652 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  3. Aghababa, M.P., Akbari, M.E.: A chattering-free robust adaptive sliding mode controller for synchronization of two different chaotic systems with unknown uncertainties and external disturbances. Appl. Math. Comput. 218, 5757–5768 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  4. Aghababa, M.P., Feizi, H.: Nonsingular terminal sliding mode approach applied to synchronize chaotic systems with unknown parameters and nonlinear inputs. Chin. Phys. B 21, 060506 (2012)

    Article  Google Scholar 

  5. Aghababa, M.P., Aghababa, H.P.: Chaos suppression of a class of unknown uncertain chaotic systems via single input. Commun. Nonlinear Sci. Numer. Simul. 17, 3533–3538 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  6. Aghababa, M.P., Feizi, H.: Design of a sliding mode controller for synchronizing chaotic systems with parameter and model uncertainties and external disturbances. Trans. Inst. Meas. Control 34, 990–997 (2012)

    Article  Google Scholar 

  7. Aghababa, M.P., Aghababa, H.P.: A novel finite-time sliding mode controller for synchronization of chaotic systems with input nonlinearity. Arab. J. Sci. Eng. (2012). doi:10.1007/s13369-012-0459-z

    Google Scholar 

  8. Aghababa, M.P.: A novel adaptive finite-time controller for synchronizing chaotic gyros with nonlinear inputs. Chin. Phys. B 20, 090505 (2011)

    Article  Google Scholar 

  9. Aghababa, M.P., Aghababa, H.P.: Synchronization of mechanical horizontal platform systems in finite time. Appl. Math. Model. 36, 4579–4591 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  10. Aghababa, M.P.: Design of an adaptive finite-time controller for synchronization of two identical/different non-autonomous chaotic flywheel governor systems. Chin. Phys. B 21, 030502 (2012)

    Article  Google Scholar 

  11. Aghababa, M.P., Aghababa, H.P.: Finite-time stabilization of uncertain non-autonomous chaotic gyroscopes with nonlinear inputs. Appl. Math. Mech. 33, 155–164 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  12. Aghababa, M.P., Aghababa, H.P.: Chaos suppression of rotational machine systems via finite-time control method. Nonlinear Dyn. 69, 1881–1888 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  13. Aghababa, M.P., Aghababa, H.P.: Chaos suppression of uncertain gyros in a given finite time. Chin. Phys. B 21, 110505 (2012)

    Article  Google Scholar 

  14. Aghababa, M.P., Aghababa, H.P.: Finite-time stabilization of a non-autonomous chaotic rotating mechanical system. J. Franklin Inst. 349, 2875–2888 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  15. Aghababa, M.P., Aghababa, H.P.: Finite-time stabilization of non-autonomous uncertain chaotic centrifugal flywheel governor systems with input nonlinearities. J. Vib. Control (2012). doi:10.1177/1077546312463715

    Google Scholar 

  16. Aghababa, M.P., Aghababa, H.P.: A general nonlinear adaptive control scheme for finite-time synchronization of chaotic systems with uncertain parameters and nonlinear inputs. Nonlinear Dyn. 69, 1903–1914 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  17. Aghababa, M.P., Aghababa, H.P.: Adaptive finite-time synchronization of non-autonomous chaotic systems with uncertainty. J. Comput. Nonlinear Dyn. 8, 031006 (2013)

    Article  Google Scholar 

  18. Lu, J.G., Chen, G.: A note on the fractional-order Chen system. Chaos Solitons Fractals 27, 685–688 (2006)

    Article  MATH  Google Scholar 

  19. Aghababa, M.P.: Chaos in a fractional-order micro-electro-mechanical resonator and its suppression. Chin. Phys. B 21, 100505 (2012)

    Article  Google Scholar 

  20. Yang, Q., Zeng, C.: Chaos in fractional conjugate Lorenz system and its scaling attractors. Commun. Nonlinear Sci. Numer. Simul. 15, 4041–4051 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  21. Odibat, Z.M.: Adaptive feedback control and synchronization of non-identical chaotic fractional order systems. Nonlinear Dyn. 60, 479–487 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  22. Hamamci, S.E.: Stabilization using fractional-order PI and PID controllers. Nonlinear Dyn. 51, 329–343 (2008)

    Article  MATH  Google Scholar 

  23. Lu, J.G.: Nonlinear observer design to synchronize fractional-order chaotic systems via a scalar transmitted signal. Physica A 359, 107–118 (2006)

    Article  Google Scholar 

  24. Wu, X., Lu, H., Shen, S.: Synchronization of a new fractional-order hyperchaotic system. Phys. Lett. A 373, 2329–2337 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  25. Song, L., Yang, J., Xu, S.: Chaos synchronization for a class of nonlinear oscillators with fractional order. Nonlinear Anal. 72, 2326–2336 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  26. Pan, L., Zhou, W., Zhou, L., Sun, K.: Chaos synchronization between two different fractional-order hyperchaotic systems. Commun. Nonlinear Sci. Numer. Simul. 16, 2628–2640 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  27. Wang, X.Y., Song, J.M.: Synchronization of the fractional order hyperchaos Lorenz systems with activation feedback control. Commun. Nonlinear Sci. Numer. Simul. 14, 3351–3357 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  28. Aghababa, M.P.: Robust finite-time stabilization of fractional-order chaotic systems based on fractional Lyapunov stability theory. J. Comput. Nonlinear Dyn. 7, 021010 (2012)

    Article  Google Scholar 

  29. Aghababa, M.P.: Robust stabilization and synchronization of a class of fractional-order chaotic systems via a novel fractional sliding mode controller. Commun. Nonlinear Sci. Numer. Simul. 17, 2670–2681 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  30. Aghababa, M.P.: Finite-time chaos control and synchronization of fractional-order chaotic (hyperchaotic) systems via fractional nonsingular terminal sliding mode technique. Nonlinear Dyn. 69, 247–261 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  31. Aghababa, M.P.: A novel terminal sliding mode controller for a class of non-autonomous fractional-order systems. Nonlinear Dyn. (2013). doi:10.1007/s11071-013-0822-y

    Google Scholar 

  32. Podlubny, I.: Fractional Differential Equations. Academic Press, New York (1999)

    MATH  Google Scholar 

  33. Li, C., Deng, W.: Remarks on fractional derivatives. Appl. Math. Comput. 187, 777–784 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  34. Matignon, D.: Stability results of fractional differential equations with applications to control processing. In: IEEE-SMC Proceedings of the Computational Engineering in Systems and Application Multiconference, pp. 963–968. IMACS, Lille, France (1996)

    Google Scholar 

  35. Li, Y., Chen, Y.Q., Podlubny, I.: Mittag–Leffler stability of fractional order nonlinear dynamic systems. Automatica 45, 1965–1969 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  36. Utkin, V.I.: Sliding Modes in Control Optimization. Springer, Berlin (1992)

    Book  MATH  Google Scholar 

  37. Diethelm, K., Ford, N.J., Freed, A.D.: A predictor-corrector approach for the numerical solution of fractional differential equations. Nonlinear Dyn. 29, 3–22 (2002)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Pourmahmood Aghababa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aghababa, M.P. No-chatter variable structure control for fractional nonlinear complex systems. Nonlinear Dyn 73, 2329–2342 (2013). https://doi.org/10.1007/s11071-013-0944-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-013-0944-2

Keywords

Navigation