Skip to main content
Log in

Mitigation of cascading failures on complex networks

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

To prevent or mitigate the cascading propagation on complex networks more efficiently, taking into account some existing protections and measures in real-life networks, we introduce a new mitigation strategy. Applying the global removal and two attacking strategies, we demonstrate the efficiency of the mitigation method on improving the robustness level against cascading failures in Barabási–Albert (BA) scale-free networks and in the Internet, as well as in the power grid of the western United States. We show that only making simple adjustments to the overload edges can dramatically enhance the robustness of diverse networks subject to the global removal and targeted attacks. We further compare the mitigation strategy in two attacks and observe to what extent the improvement of the robustness in two attacks depends on the parameters in our cascading model. In addition, by the times that an edge overloads in the cascading propagation, we discuss how to protect the edges with the different load. Our results are useful not only for improving significantly the robustness of complex networks but also for further studying on the control and defense of cascading failures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Albert, R., Albert, I., Nakarado, G.L.: Structural vulnerability of the North American power grid. Phys. Rev. E 69, 025103(R) (2004)

    Article  Google Scholar 

  2. Rosato, V., Issacharoff, L., Tiriticco, F., Meloni, S., Porcellinis, S., Setola, R.: Modelling interdependent infrastructures using interacting dynamical models. Int. J. Crit. Infrastructures 4, 63–79 (2008)

    Article  Google Scholar 

  3. Vespignani, A.: The fragility of interdependency. Nature 464, 984–985 (2010)

    Article  Google Scholar 

  4. Buldyrev, S.V., Parshani, R., Paul, G., Stanley, H.E., Havlin, S.: Catastrophic cascade of failures in interdependent networks. Nature 464, 1025–1028 (2010)

    Article  Google Scholar 

  5. Pastor-Satorras, R., Vázquez, A., Vespignani, A.: Dynamical and correlation properties of the Internet. Phys. Rev. Lett. 87, 258701 (2001)

    Article  Google Scholar 

  6. Goh, K.I., Hahng, B., Kim, D.: Fluctuation-driven dynamics of the Internet topology. Phys. Rev. Lett. 88(10), 108701 (2002)

    Article  Google Scholar 

  7. Mirzasoleiman, B., Babaei, M., Jalili, M., Safari, M.: Cascaded failures in weighted networks. Phys. Rev. E 84, 046114 (2011)

    Article  Google Scholar 

  8. Wu, Z.X., Peng, G., Wang, W.X., Chan, S., Wong, E.E.M.: Cascading failure spreading on weighted heterogeneous networks. J. Stat. Mech. P05013 (2008)

  9. Wang, W.X., Chen, G.R.: Universal robustness characteristic of weighted networks against cascading failure. Phys. Rev. E 77, 026101 (2008)

    Article  Google Scholar 

  10. Wang, X.F., Xu, J.: Cascading failures in coupled map lattices. Phys. Rev. E 70, 056113 (2004)

    Article  Google Scholar 

  11. Wang, W.X., Lai, Y.C., Dieter, A.: Cascading failures and the emergence of cooperation in evolutionary-game based models of social and economical networks. Chaos 21(3), 033112 (2011)

    Article  Google Scholar 

  12. Bao, Z.J., Cao, Y.J., Ding, L.J., Han, Z.X., Wang, G.Z.: Dynamics of load entropy during cascading failure propagation in scale-free networks. Phys. Lett. A 372, 5778 (2008)

    Article  MATH  Google Scholar 

  13. Wang, J.W., Rong, L.L., Zhang, L., Zhang, Z.Z.: Attack vulnerability of scale-free networks due to cascading failures. Physica A 387, 6671 (2008)

    Article  Google Scholar 

  14. Li, P., Wang, B.H., Sun, H., Gao, P., Zhou, T.: A limited resource model of fault-tolerant capability against cascading failure of complex network. Eur. Phys. J. B 62, 1 (2008)

    Article  Google Scholar 

  15. Crucitti, P., Latora, V., Marchiori, M.: Model for cascading failures in complex networks. Phys. Rev. E 69, 045104 (2004)

    Article  Google Scholar 

  16. Bao, Z.J., Cao, Y.J., Ding, L.J., Han, Z.X., Wang, G.Z.: Dynamics of load entropy during cascading failure propagation in scale-free networks. Phys. Lett. A 372, 5778 (2008)

    Article  MATH  Google Scholar 

  17. Zhao, L., Park, K., Lai, Y.C.: Attack vulnerability of scale-free networks due to cascading breakdown. Phys. Rev. E 70, 035101(R) (2004)

    Google Scholar 

  18. Li, S.D., Li, L.X., Yang, Y.X., Luo, Q.: Revealing the process of edge-based-attack cascading failures. Nonlinear Dyn. (2012). doi:10.1007/s11071-011-0308-8

    Google Scholar 

  19. Wang, J.W., Rong, L.L.: Effect Attack on scale-free networks due to cascading failures. Chin. Phys. Lett. 25, 3826 (2008)

    Article  Google Scholar 

  20. Wang, J.W., Rong, L.L.: Edge-based-attack induced cascading failures on scale-free networks. Physica A 388(8), 1731–1737 (2009)

    Article  Google Scholar 

  21. Wang, J.W., Rong, L.L.: Cascade-based attack vulnerability on the U.S. power grid. Saf. Sci. 47(10), 1332–1336 (2009)

    Article  Google Scholar 

  22. Wang, J.W., Rong, L.L.: Robustness of the western United States power grid under edge attack strategies due to cascading failures. Saf. Sci. 49(6), 807–812 (2011)

    Article  MathSciNet  Google Scholar 

  23. Buzna, L., Peters, K., Ammoser, H., Kühnert, C., Helbing, D.: Efficient response to cascading disaster spreading. Phys. Rev. E 75, 056107 (2007)

    Article  Google Scholar 

  24. Yang, R., Wang, W.X., Lai, Y.C., Chen, G.R.: Optimal weighting scheme for suppressing cascades and traffic congestion in complex networks. Phys. Rev. E 79, 026112 (2009)

    Article  Google Scholar 

  25. Peters, K., Buzna, L., Helbing, D.: Modelling of cascading effects and efficient response to disaster spreading in complex networks. Int. J. Crit. Infrastructures 4(1/2), 46–62 (2008)

    Article  Google Scholar 

  26. Dou, B.L., Wang, X.G., Zhang, S.Y.: Robustness of networks against cascading failures. Physica A 389, 2310–2317 (2010)

    Article  Google Scholar 

  27. Motter, A.E.: Cascade control and defense in complex networks. Phys. Rev. Lett. 93, 098701 (2004)

    Article  Google Scholar 

  28. Wang, B., Kim, B.J.: A high-robustness and low-cost model for cascading failures. Europhys. Lett. 78, 48001 (2007)

    Article  Google Scholar 

  29. Ash, A., Newth, D.: Optimizing complex networks for resilience against cascading failure. Physica A 380, 673 (2007)

    Article  Google Scholar 

  30. Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Phys. Rev. Lett. 100, 218701 (2008)

    Article  Google Scholar 

  31. Yang, T., Zhou, R., Xie, Y.B., Lai, Y.C., Wang, B.H.: Optimal contact process on complex networks. Phys. Rev. E 78, 066109 (2008)

    Article  Google Scholar 

  32. Dueñs-Osorio, L., Vemuru, S.M.: Cascading failures in complex infrastructure systems. Struct. Saf. 31, 157–167 (2009)

    Article  Google Scholar 

  33. Kinney, R., Crucitti, P., Albert, R., Latora, V.: Modeling cascading failures in the North American power grid. Eur. Phys. J. B 46, 101–107 (2005)

    Article  Google Scholar 

  34. Zhang, J.H., Xu, X.M., Liu, H., Wang, S.L., Fei, Q.: Attack vulnerability of self-organizing networks. Saf. Sci. 50, 443–447 (2012)

    Article  Google Scholar 

  35. Bao, Z.J., Cao, Y.J., Wang, G.Z., Ding, L.J.: Analysis of cascading failure in electric grid based on power flow entropy. Phys. Lett. A 373, 3032–3040 (2009)

    Article  Google Scholar 

  36. Wu, J.J., Sun, H.J., Gao, Z.Y.: Cascading failures on weighted urban traffic equilibrium networks. Physica A 386(1), 407–413 (2007)

    Article  Google Scholar 

  37. Wang, W.X., Yang, R., Lai, Y.C., Kovanis, V., Grebogi, C.: Predicting catastrophes in nonlinear dynamical systems by compressive sensing. Phys. Rev. Lett. 106, 154101 (2011)

    Article  Google Scholar 

  38. Wang, W.X., Wang, R., Lai, Y.C.: Cascade of elimination and emergence of pure cooperation in coevolutionary games on networks. Phys. Rev. E 81, 035102 (2010)

    Article  MathSciNet  Google Scholar 

  39. Parshani, R., Buldyrev, S.V., Havlin, S.: Interdependent networks: reducing the coupling strength leads to a change from a first to second order percolation transition. Phys. Rev. Lett. 105, 048701 (2010)

    Article  Google Scholar 

  40. Huang, X.Q., Gao, J.X., Buldyrev, S.V., Havlin, S., Stanley, H.E.: Robustness of interdependent networks under targeted attack. Phys. Rev. E 83, 065101(R) (2011)

    Google Scholar 

  41. Shao, J., Buldyrev, S.V., Havlin, S., Stanley, H.E.: Cascade of failures in coupled network systems with multiple support-dependence relations. Phys. Rev. E 83, 036116 (2011)

    Article  MathSciNet  Google Scholar 

  42. Gao, J., Buldyrev, S.V., Havlin, S., Stanley, H.E.: Robustness of a network of networks. Phys. Rev. Lett. 107, 195701 (2011)

    Article  Google Scholar 

  43. Brummitt, C.D., D’souza, R.M., Leicht, E.A.: Suppressing cascades of load in interdependent networks. Proc. Natl. Acad. Sci. USA (2012). doi:10.1073/pnas.1110586109

    Google Scholar 

  44. Barabási, A.-L., Albert, R.: Emergence of scaling in random networks. Science 286, 509–512 (1999)

    Article  MathSciNet  Google Scholar 

  45. Network data from Mark Newman’s home page (2006). http://www-personal.umich.edu/~mejn/netdata/

  46. The raw data used in “Collective dynamics of ‘small-world’ networks” by D.J. Watts and S.H. Strogatz (Nature 1998) describing the U.S. power grid

Download references

Acknowledgement

This work was supported by the National Natural Science Foundation of China under Grant no. 71101022 and the Fundamental Research Funds for the Central Universities under Grant no. N110406003.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianwei Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, J. Mitigation of cascading failures on complex networks. Nonlinear Dyn 70, 1959–1967 (2012). https://doi.org/10.1007/s11071-012-0587-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-012-0587-8

Keywords

Navigation