Skip to main content
Log in

A new frequency domain representation and analysis for subharmonic oscillation

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

For a weakly nonlinear oscillator, the frequency domain Volterra kernels, often called the generalized frequency response functions, can provide accurate analysis of the response in terms of amplitudes and frequencies, in a transparent algebraic way. However, a Volterra series representation based analysis will become void for nonlinear oscillators that exhibit subharmonics, and the problem of finding a solution in this situation has mainly been treated by traditional analytical approximation methods. In this paper, a novel method is developed, by introducing a frequency domain subharmonic kernel representation for subharmonic systems subject to a single tone excitation frequency, to allow the advantages and the benefits associated with the traditional frequency domain representations to be applied to severely nonlinear systems that exhibit subharmonic behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Krylov, N., Bogolyubov, N.: Introduction to Nonlinear Mechanics. Princeton University Press, Princeton (1947)

    Google Scholar 

  2. Stoker, J.J.: Nonlinear Vibrations in Mechanical and Electrical Systems. Interscience, New York (1950)

    MATH  Google Scholar 

  3. Nayfeh, A.H.: Perturbation methods in nonlinear dynamics. Lect. Notes Phys. 247, 238–314 (1986)

    Article  MathSciNet  Google Scholar 

  4. Volterra, V.: Theory of Functionals. Blackie, Glasgov (1930)

    Google Scholar 

  5. Chua, L.O., Tang, Y.S.: Nonlinear oscillation via Volterra series. IEEE Trans. Circuits Syst. 29, 150–168 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  6. Fliess, M., Lamnabhi, M., Lamnabhi-Lagarrigue, F.: An algebraic approach to nonlinear functional expansions. IEEE Trans. Circuits Syst. 30, 554–570 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  7. Yue, R., Billings, S.A., Lang, Z.Q.: An investigation into the characteristics of non-linear frequency response functions, part 1: understanding the higher dimensional frequency spaces. Int. J. Control 78, 1031–1044 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  8. Billings, S.A., Tsang, K.M.: Spectral analysis for nonlinear systems, part II: interpretation of nonlinear frequency response functions. Mech. Syst. Signal Process. 3, 341–359 (1989)

    Article  MATH  Google Scholar 

  9. Nayfeh, A.H., Mook, D.T.: Nonlinear Oscillations. Wiley, New York (1979)

    MATH  Google Scholar 

  10. Hayashi, C.: Subharmonic oscillations in nonlinear systems. J. Appl. Phys. 24, 521–529 (1953)

    Article  MathSciNet  MATH  Google Scholar 

  11. Szemplinska-Stupnicka, W., Bajkowski, J.: The 1/2 subharmonic resonance and its transition to chaotic motion in a nonlinear oscillator. Int. J. Non-Linear Mech. 21, 401–419 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  12. Li, L.M., Billings, S.A.: Discrete time subharmonic modelling and analysis. Int. J. Control 78, 1265–1284 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  13. Schetzen, M.: The Volterra and Wiener Theories of Non-Linear System. Wiley, New York (1980)

    Google Scholar 

  14. Landa, P.S.: Regular and Chaotic Oscillations. Springer, New York (2001)

    MATH  Google Scholar 

  15. Boyd, S.P., Chua, L.O., Desoer, C.A.: Analytical foundations of Volterra series. IMA J. Math. Control Inf. 1, 243–282 (1984)

    Article  MATH  Google Scholar 

  16. Billings, S.A., Boaghe, O.M.: The response spectrum map, a frequency domain equivalent to the bifurcation diagram. Int. J. Bifurc. Chaos 11, 1961–1975 (2001)

    Article  Google Scholar 

  17. Nam, S.W., Powers, E.J.: Application of higher-order spectral analysis to cubically nonlinear system identification. IEEE Trans. Signal Process. 42, 1746–1765 (1994)

    Article  Google Scholar 

  18. Cho, Y.S., Powers, E.J.: Quadratic system identification using higher order spectra of i.i.d signals. IEEE Trans. Signal Process. 42, 1268–1271 (1994)

    Article  Google Scholar 

  19. Boyd, S., Tang, Y.S., Chua, L.O.: Measuring Volterra kernels. IEEE Trans. Circuits Syst. CAS-30, 571–577 (1983)

    Article  Google Scholar 

  20. Li, L.M., Billings, S.A.: Estimation of generalized frequency response functions for quadratically and cubically nonlinear systems. J. Sound Vib. 330, 461–470 (2011)

    Article  Google Scholar 

  21. Billings, S.A., Korenberg, M.J., Chen, S.: Identification of non-linear output-affine systems using an orthogonal least-squares algorithm. Int. J. Syst. Sci. 19, 1559–1568 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  22. Wei, H.L., Billings, S.A.: Term and variable selection for nonlinear system identification. Int. J. Control 77, 86–110 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  23. Ludeke, C.: Predominantly subharmonic oscillations. J. Appl. Phys. 22, 1321–1326 (1951)

    Article  MATH  Google Scholar 

  24. Ludeke, C.: The extinction of predominantly subharmonic oscillations in nonlinear systems. J. Appl. Phys. 24, 96–97 (1953)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge that this work was supported by the Engineering and Physical Sciences Research Council (EPSRC) UK, and a European Research Council Advanced Investigator Award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Billings.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, L.M., Billings, S.A. A new frequency domain representation and analysis for subharmonic oscillation. Nonlinear Dyn 70, 1485–1497 (2012). https://doi.org/10.1007/s11071-012-0549-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-012-0549-1

Keywords

Navigation