Skip to main content
Log in

Correlated scale-free network with community: modeling and transportation dynamics

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Many transport processes on network depend crucially on the underlying network topology. In this paper, we propose a model to generate correlated scale free transportation networks with community structure by considering the mechanisms of dynamical network evolution and rewiring links. With the introduction of congestion effects, we investigate the performance and carrying capacity of this network. The results show that congestion in the uncorrelated network is more serious than the assortative or disassortative ones. Therefore, the correlated network with communities can bear much more traffic flow. In addition, the networks with lager modularity can enhance the transportation efficiently.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Pastor-Satorras, R., Vázquez, A., Vespignani, A.: Dynamical and correlation properties of the Internet. Phys. Rev. Lett. 87, 258701 (2001)

    Article  Google Scholar 

  2. Wang, J.Y., Feng, J.W., Xu, C., Zhao, Y.: Cluster synchronization of nonlinearly-coupled complex networks with nonidentical nodes and asymmetrical coupling matrix. Nonlinear Dyn. 67(2), 1635–1646 (2012)

    Article  Google Scholar 

  3. Newman, M.E.J.: The structure and function of complex networks. SIAM Rev. 45, 167–256 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  4. Lü, L., Li, C.R.: Generalized synchronization of spatiotemporal chaos in a weighted complex network. Nonlinear Dyn. 63(4), 699–710 (2011)

    Article  Google Scholar 

  5. Liang, J.L., Wang, Z.D., Liu, X.H.: Exponential synchronization of stochastic delayed discrete-time complex networks. Nonlinear Dyn. 53(1–2), 153–165 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  6. Wu, J.J., Sun, H.J., Gao, Z.Y.: Dynamic urban traffic flow behavior on scale-free networks. Physica A 387, 653–660 (2008)

    Article  Google Scholar 

  7. Ito, T., Chiba, T., Ozawa, R., Yoshida, M., Hattori, M., Sakaki, Y.: A comprehensive two-hybrid analysis to explore the yeast protein interactome. Proc. Natl. Acad. Sci. USA 98, 4569–4574 (2001)

    Article  Google Scholar 

  8. Girvan, M., Newman, M.E.J.: Community structure in social and biological networks. Proc. Natl. Acad. Sci. USA 99, 7821–7826 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  9. Guimerà, R., Mossa, S., Turtschi, A., Amaral, L.A.: The worldwide air transportation network: anomalous centrality, community structure, and cities’ global roles. Proc. Natl. Acad. Sci. USA 102(22), 7794–7799 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  10. Fortunato, S., Latora, V., Marchiori, M.: A method to find community structure based on information centrality. Phys. Rev. E 70, 056104 (2004)

    Article  Google Scholar 

  11. Arenas, A., Díaz-Guilera, A., Pérez-Vicente, C.: Synchronization reveals topological scales in complex networks. Phys. Rev. Lett. 96, 114102 (2006)

    Article  Google Scholar 

  12. Wu, J.J., Gao, Z.Y., Sun, H.J.: Cascade and breakdown in scale-free networks with community structure. Phys. Rev. E 74, 066111 (2006)

    Article  Google Scholar 

  13. Kitchovitch, S., Liò, P.: Community structure in social networks: applications for epidemiological modelling. PLoS ONE 6(7), 22220 (2011)

    Article  Google Scholar 

  14. Newman, M.E.J.: Assortative mixing in networks. Phys. Rev. Lett. 89, 208701 (2002)

    Article  Google Scholar 

  15. Capocci, A., Caldarelli, G., Rios, P.D.L.: Quantitative description and modeling of real networks. Phys. Rev. E 68, 047101 (2003)

    Article  Google Scholar 

  16. Sorrentino, F., di Bernardo, M., Huerta-Cuellar, G., Boccaletti, S.: Synchronization in weighed scale free networks with degree-degree correlation. Physica D 224, 123–129 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  17. Xue, Y.H., Wang, J., Li, L., He, D.R., Hu, B.B.: Optimizing transport efficiency on scale-free networks through assortative or dissortative topology. Phys. Rev. E 81, 037101 (2010)

    Article  Google Scholar 

  18. Sun, J.T., Wang, S.J., Huang, Z.G., Wang, Y.H.: Effect of degree correlations on networked traffic dynamics. Physica A 388, 3244–3248 (2009)

    Article  Google Scholar 

  19. Menche, J., Valleriani, A., Lipowsky, R.: Dynamical processes on dissortative scale-free networks. Europhys. Lett. 89, 18002 (2010)

    Article  Google Scholar 

  20. Newman, M.E.J., Girvan, M.: Finding and evaluating community structure in networks. Phys. Rev. E 69, 026113 (2004)

    Article  Google Scholar 

  21. Lancichinetti, A., Fortunato, S.: Community detection algorithms: a comparative analysis. Phys. Rev. E 80, 056117 (2009)

    Article  Google Scholar 

  22. Barabási, A.L., Albert, R.: Emergence of scaling in random networks. Science 286, 509–512 (1999)

    Article  MathSciNet  Google Scholar 

  23. Maslov, S., Sneppen, K.: Specificity and stability in topology of protein networks. Science 296, 910–913 (2002)

    Article  Google Scholar 

  24. Sheffi, Y.: Urban Transportation Networks: Equilibrium Analysis with Mathematical Programming Methods. Prentice-Hall, Englewood Cliffs (1985)

    Google Scholar 

  25. Wu, J.J., Gao, Z.Y., Sun, H.J., Huang, H.J.: Congestion in different topologies of traffic networks. Europhys. Lett. 74, 560 (2006)

    Article  Google Scholar 

  26. Wu, J.J., Sun, H.J., Gao, Z.Y.: Cascading failures on weighted urban traffic equilibrium networks. Physica A 386, 407–413 (2007)

    Article  Google Scholar 

  27. Latora, V., Marchiori, M.: Efficient behavior of small-world networks. Phys. Rev. Lett. 87, 198701 (2001)

    Article  Google Scholar 

Download references

Acknowledgements

This paper is partly supported by National Basic Research Program of China (2012CB725401), NSFC (71131001), NSF of Beijing (8102029), the Fundamental Research Funds for the Central Universities (2012JBZ005), and the Program for New Century Excellent Talents in University (NCET-09-0208), and FANEDD (201170).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian-jun Wu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, Hj., Zhang, H. & Wu, Jj. Correlated scale-free network with community: modeling and transportation dynamics. Nonlinear Dyn 69, 2097–2104 (2012). https://doi.org/10.1007/s11071-012-0411-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-012-0411-5

Keywords

Navigation