Skip to main content
Log in

On the harmonic balance with linearization for asymmetric single degree of freedom non-linear oscillators

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper deals with analytical approximation of non-linear oscillations of conservative asymmetric single degree of freedom systems, using the method of harmonic balance with linearization. This technique which consists of linearizing the governing equations prior to harmonic balance permits us to avoid solving complicated non-linear algebraic equations. But it could be applied only to symmetric oscillations for which it proves to be very simple and effective. This restriction is due to the fact that the method requires an appropriate initial approximate solution as input. Such a solution could not be readily identified for nonsymmetric oscillations, contrary the symmetric case where the fundamental harmonic works well. For these nonsymmetric oscillations, we propose in this paper to consider an initial approximation which consists of a small bias plus the fundamental harmonic. By expanding the corresponding harmonic balance equations respectively to first and second order in the bias, we are able to easily determine the bias and thus the required initial approximate solution that yields consistent solution at higher order. We use three examples to illustrate the proposed approach and reveal its simplicity and its very good convergence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Mickens, R.E.: Comments on the method of harmonic balance. J. Sound Vib. 94, 456–460 (1984)

    Article  MathSciNet  Google Scholar 

  2. Wu, B.S., Li, P.S.: A method for obtaining approximate analytic periods for a class of nonlinear oscillators. Meccanica 36, 167–176 (2001)

    Article  MATH  Google Scholar 

  3. Wu, B.S., Sun, W.P., Lim, C.W.: An analytical approximate technique for a class of strongly non-linear oscillators. Int. J. Non-Linear Mech. 41, 766–774 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  4. Lim, C.W., Wu, B.S.: A new analytical approach to the Duffing-harmonic oscillator. Phys. Lett. A 311, 365–373 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  5. Wu, B.S., Lim, C.W., Sun, W.P.: Improved harmonic balance approach to periodic solutions of non-linear jerk equations. Phys. Lett. A 354, 95–100 (2006)

    Article  Google Scholar 

  6. Lim, C.W., Wu, B.S., Sun, W.P.: Higher accuracy analytical approximations to the Duffing-harmonic oscillator. J. Sound Vib. 296, 1039–1045 (2006)

    Article  MathSciNet  Google Scholar 

  7. Yamgoué, S.B., Kofané, T.C.: Linearized harmonic balance based derivation of slow flow for some class of autonomous single degree of freedom oscillators. Int. J. Non-Linear Mech. 43, 993–999 (2008)

    Article  Google Scholar 

  8. Nayfeh, A.H., Mook, D.T.: Nonlinear Oscillations. Wiley, New York (1979)

    MATH  Google Scholar 

  9. Li, P.S., Wu, B.S.: An iteration approach to nonlinear oscillations of conservative single-degree-of-freedom systems. Acta Mech. 170, 69–75 (2004)

    Article  MATH  Google Scholar 

  10. Wu, B.S., Lim, C.W.: Large amplitude non-linear oscillations of a general conservative system. Int. J. Non-Linear Mech. 39, 859–870 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  11. Hu, H.: Solution of a quadratic nonlinear oscillator by the method of harmonic balance. J. Sound Vib. 93, 462–468 (2006)

    Article  Google Scholar 

  12. Hu, H.: Solutions of a quadratic nonlinear oscillator: iteration procedure. J. Sound Vib. 298, 1159–1165 (2006)

    Article  Google Scholar 

  13. Nandakumar, K., Chatterjee, A.: The simplest resonance capture problem, using harmonic balance based averaging. Nonlinear Dyn. 37, 271–284 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  14. Yamgoué, S.B., Kofané, T.C.: The subharmonic Melnikov theory for damped and driven oscillators revisited. Int. J. Bifurc. Chaos 12, 1915–1923 (2002)

    Article  MATH  Google Scholar 

  15. Spiegel, M.R.: Theory and Problems of Advanced Calculus SI(metric)edition. McGraw-Hill, New York (1963)

    Google Scholar 

  16. Kaplan, W.: Advanced Calculus, fifth edn. Addison-Wesley, New York (2003)

    Google Scholar 

  17. Venkateshwar Rao, A., Nageswara Rao, B.: Some remarks on the harmonic balance method for mixed-parity non-linear oscillators. J. Sound Vib. 170, 571–576 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  18. Beigie, D., Wiggins, S.: Dynamics associated with a quasiperiodically forced Morse oscillator: application to molecular dissociation. Phys. Rev. A 45, 4803–4829 (1992)

    Article  Google Scholar 

  19. Heagy, J., Yuan, J.M.: Dynamics of an impulsively driven Morse oscillator. Phys. Rev. A 41, 571–581 (1990)

    Article  MathSciNet  Google Scholar 

  20. Yamgoué, S.B., Kofané, T.C.: Application of the Krylov–Bogoliubov–Mitropolsky method to weakly damped strongly non-linear planar Hamiltonian systems. Int. J. Non-Linear Mech. 42, 1240–1247 (2007)

    Article  MATH  Google Scholar 

  21. Mickens, R.E.: Quadratic non-linear oscillators. J. Sound Vib. 270, 427–432 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  22. Enns, R.H., McGuire, G.C.: Nonlinear Physics with Mathematica for Scientists and Engineers. Birkhäuser, Boston (2001)

    Book  MATH  Google Scholar 

  23. Hu, H.: Exact solution of a quadratic nonlinear oscillator. J. Sound Vib. 295, 450–457 (2006)

    Article  Google Scholar 

  24. Yagasaki, K.: Dynamics of a simple model for a win-loaded nonlinear structure: bifurcations of codimension one and two. ASME J. Appl. Mech. 65, 505–512 (1998)

    Article  Google Scholar 

  25. Yamgoué, S.B., Kofané, T.C.: On the analytical approximation of damped oscillations of autonomous single degree of freedom oscillators. Int. J. Non-Linear Mech. 41, 1248–1254 (2006)

    Article  MATH  Google Scholar 

  26. Amore, P., Raya, A., Fernández, F.M.: Comparison of alternative improved perturbation methods for nonlinear oscillations. Phys. Lett. A 340, 201–208 (2005)

    Article  MATH  Google Scholar 

  27. Amore, P., Aranda, A.: Presenting a new method for the solution of nonlinear problems. Phys. Lett. A 316, 218–225 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  28. He, J.-H.: Modified Lindstedt–Poincaré methods for some strongly non-linear oscillations, Part I: expansion of a constant. Int. J. Non-Linear Mech. 37, 309–314 (2002)

    Article  MATH  Google Scholar 

  29. Das, S.L., Chatterjee, A.: Multiple scales via Galerkin projections: approximate asymptotics for strongly nonlinear oscillations. Nonlinear Dyn. 32, 161–186 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  30. Nandakumar, K., Chatterjee, A.: Higher-order pseudoaveraging via harmonic balance for strongly nonlinear oscillations. J. Vib. Acoust. 127, 416–419 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Serge Bruno Yamgoué.

Appendix A

Appendix A

Explicit expressions of quantities introduced in the expression of the third order approximation of the angular frequency for the second example, (3.22):

(A.1)
(A.2)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yamgoué, S.B. On the harmonic balance with linearization for asymmetric single degree of freedom non-linear oscillators. Nonlinear Dyn 69, 1051–1062 (2012). https://doi.org/10.1007/s11071-012-0326-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-012-0326-1

Keywords

Navigation