Skip to main content
Log in

Application of non-linear damping to vibration isolation: an experimental study

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In a previous study, the authors have proved that in theory the introduction of a cubic non-linear damping can produce ideal vibration isolation such that the system force transmissibility over the resonant frequency region is modified, but the transmissibility over the non-resonant regions remain unaffected. The present study is concerned with both an experimental verification of this theoretical finding and the selection of the cubic damping characteristic parameter required to achieve a desired performance for a single degree of freedom vibration isolation system. These results provide an important basis for the design and practical application of non-linearly damped vibration isolation systems in engineering practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mead, D.J.: Passive Vibration Control. Wiley, New York (1998)

    Google Scholar 

  2. Ruzicka, J.E., Derby, T.E.: Influence of Damping in Vibration Isolation, T.S.a.V.I Centre, US Department of Defence (1971)

  3. El Sinawi, A.H.: Active vibration isolation of a flexible structure mounted on a vibrating elastic base. J. Sound Vib. 86, 379–385 (2004)

    Google Scholar 

  4. Elliott, S.J., Serrand, M., Gardonio, P.: Feedback stability limits for active isolation systems with reactive and inertial actuators. J. Vib. Acoust. 123, 250–261 (2001)

    Article  Google Scholar 

  5. Ravinda, B., Malik, A.K.: Chaotic response of a harmonically excited mass on an isolator with nonlinear stiffness and damping characteristics. J. Sound Vib. 182, 345–353 (1995)

    Article  Google Scholar 

  6. Hundal, M.S.: Response of shock isolators with linear and quadratic damping. J. Sound Vib. 76, 273–281 (1981)

    Article  Google Scholar 

  7. Jazar, G.N., Houim, R., Narimani, A., Golnaraghi, M.F.: Frequency response and jump avoidance in a nonlinear passive engine mount. J. Vib. Control 12(11), 1205–1237 (2006)

    Article  MATH  Google Scholar 

  8. Popov, G., Sankar, S.: Modeling and analyses of non-linear orifice type damping in vibration isolators. J. Sound Vib. 183(5), 751–764 (1995)

    Article  MATH  Google Scholar 

  9. Shekhar, N.C., Hatwal, H., Malik, A.K.: Response of non-linear dissipative shock isolators. J. Sound Vib. 214(4), 589–603 (1998)

    Article  Google Scholar 

  10. Yang, P., Yang, J., Ding, J.: Dynamic transmissibility of a complex nonlinear coupling isolator. Tsinghua Sci. Technol. 11(5), 538–542 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  11. Milovanovic, Z., Kovacic, I., Brennan, M.J.: On the displacement transmissibility of a base excited viscously damped nonlinear vibration isolator. J. Vib. Acoust. 131(5), 054502 (2009)

    Article  Google Scholar 

  12. Lang, Z.Q., Jing, X.J., Billings, S.A., Tomlinson, G.R., Peng, Z.K.: Theoretical study of the effects of nonlinear viscous damping on vibration isolation of sdof vibrating systems. J. Sound Vib. 323(1–2), 352–365 (2009)

    Article  Google Scholar 

  13. Jing, X.J., Lang, Z.Q.: Frequency domain analysis of a dimensionless cubic nonlinear damping system subject to harmonic input. Nonlinear Dyn. 58, 469–485 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  14. Peng, Z.K., Lang, Z.Q., Jing, X.J., Billings, S.A., Tomlinson, G.R., Guo, L.Z.: The transmissibility of vibration isolators with a nonlinear antisymmetric damping characteristic. J. Vib. Acoust. 132(1), 014501 (2010)

    Article  Google Scholar 

  15. Lang, Z.Q., Billings, S.A., Yue, R., Li, J.: Output frequency response function of nonlinear Volterra systems. Automatica 43(5), 805–816 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  16. Daley, S., Hätönen, J., Owens, D.H.: Active vibration isolation in a smart spring mount using a repetitive control approach. Control Eng. Pract. 14, 991–997 (2006)

    Article  Google Scholar 

  17. Daley, S., Zazas, I., Hätönen, J.: Harmonic control of a ‘smart spring’ machinery vibration isolation system. J. Eng. Marit. Environ. 222(2), 109–119 (2008)

    Google Scholar 

  18. Chang, C.C., Zhou, L.: Neural network emulation of inverse dynamics for a magnetorheological dampers. J. Struct. Eng. 128(2), 231–239 (2002)

    Article  Google Scholar 

  19. Zhou, L., Chang, C.C.: Adaptive fuzzy control for nonlinear building—magnetorheological damper system. J. Struct. Eng. 129(7), 905–913 (2003)

    Article  Google Scholar 

  20. Winberg, M., Hansen, C., Claesson, I., Li, X.: Active control of engine vibrations in a Collins class submarine. Blekinge Institute of Technology, Research report, 11 (2003)

  21. Daley, S., Johnson, F.A., Pearson, J.B., Dixon, R.: Active vibration control for marine applications. Control Eng. Pract. 12(4), 465–474 (2004)

    Article  Google Scholar 

  22. Bonsel, J.H., Fey, R.H.B., Nijmeijer, H.: Application of a dynamic vibration absorber to a piecewise linear beam system. Nonlinear Dyn. 37(3), 227–243 (2004)

    Article  MATH  Google Scholar 

  23. Fey, R.H.B., Wouters, R.M.T., Nijmeijer, H.: Proportional and derivative control for steady state vibration mitigation in a piecewise linear beam system. Nonlinear Dyn. 60(4), 535–549 (2010)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. Q. Lang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Laalej, H., Lang, Z.Q., Daley, S. et al. Application of non-linear damping to vibration isolation: an experimental study. Nonlinear Dyn 69, 409–421 (2012). https://doi.org/10.1007/s11071-011-0274-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-011-0274-1

Keywords

Navigation