Skip to main content
Log in

Nonlinear control of electrical flexible-joint robots

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper is devoted to the nonlinear tracking control of electrically driven flexible-joint manipulators using the voltage control strategy. Despite the torque control laws that are involved in the complexity of manipulator dynamics, the proposed control law is free from manipulator dynamics. This novelty is for adopting the voltage control strategy to derive a simple robust adaptive control under both structured and unstructured uncertainty. The proposed control approach has a fast response with a good tracking performance under the well-behaved control efforts in the form of decentralized control. The control method is justified by the stability analysis and simulated on a flexible-joint electrically driven robot manipulator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Sweet, L.M., Good, M.C.: Redefinition of the robot motion control problem. IEEE Control Syst. Mag. 5(3), 18–24 (1985)

    Article  Google Scholar 

  2. Brogliato, B., Ortega, R., Lozano, R.: Global tracking controllers for flexible-joint manipulators: a comparative study. Automatica 31(7), 941–956 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  3. Tomei, P.: A simple PD controller for robots with elastic joints. IEEE Trans. Autom. Control 36(10), 1208–1213 (1991)

    Article  MathSciNet  Google Scholar 

  4. Fateh, M.M.: Robust control of flexible-joint robots using voltage control strategy. Nonlinear Dyn. (1985). doi:10.1007/11071-011-0086-3

    Google Scholar 

  5. Spong, M.W., Khorasani, K., Kokotovic, P.V.: An integral manifold approach to the feedback control of flexible joint robots. IEEE J. Robot. Autom. RA-3, 291–300 (1987)

    Article  Google Scholar 

  6. Marino, R., Nicosia, S.: Singular perturbation techniques in the adaptive control of elastic robots. Presented at the IFAC Symp. Robot Contr., Barcelona, Spain (1985)

  7. Spong, M.W.: Modeling and control of elastic joint robots. J. Dyn. Syst. Meas. Control 109, 310–319 (1987)

    Article  MATH  Google Scholar 

  8. Wilson, G.A.: Robust tracking of elastic joint manipulators using sliding mode control. Trans. Inst. Meas. Control 16(2), 99–107 (1994)

    Article  Google Scholar 

  9. Spong, M.W.: Adaptive control of flexible joint manipulators: comments on two papers. Automatica 31(4), 585–590 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  10. Yoo, S.J., Park, J.B., Choi, Y.H.: Adaptive output feedback control of flexible-joint robots using neural networks: dynamic surface design approach. IEEE Trans. Neural Netw. 19(10), 1712–1726 (2008)

    Article  Google Scholar 

  11. Chang, L.L., Chuan, C.C.: Rigid model-based fuzzy control of flexible-joint manipulators. J. Intell. Robot. Syst., 13(2), 107–126 (1995)

    Article  Google Scholar 

  12. Wang, D.: A simple iterative learning controller for manipulators with flexible joints. Automatica 31(9), 1341–1344 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  13. Zeman, V., Patel, R.V., Khorasani, K.: Control of a flexible-joint robot using neural networks. IEEE Trans. Control Syst. Technol. 5(4), 453–462 (1997)

    Article  Google Scholar 

  14. Talole, E., Kolhe, P., Phadke, B.: Extended state observer based control of flexible joint system with experimental validation. IEEE Trans. Ind. Electron. 57(4), 1411–1419 (2009)

    Article  Google Scholar 

  15. Kugi, A., Ott, C., Albu-Schaffer, A., Hirzinger, G.: On the Passivity-Based Impedance Control of Flexible Joint Robots. IEEE Trans. Robot. Autom. 24(2), 416–429 (2008)

    Google Scholar 

  16. Marino, R., Nicosia, S.: Singular perturbation techniques in the adaptive control of elastic robots. In: Proceedings of the IFAC Symp. Robot Contr., Barcelona, Spain (1985)

    Google Scholar 

  17. Tomei, P.: An observer for flexible joint robots. IEEE Trans. Autom. Control 35(6), 739–743 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  18. De Luca, A., Lanari, L.: Robots with elastic joints are linearizable via dynamic feedback. In: 34th IEEE Conf. on Decision and Control, New Orleans, LA, pp. 3895–3897 (1995)

    Google Scholar 

  19. Liang, X., Huang, X., Wang, M., Zeng, X: Adaptive task-space tracking control of robots without task-space- and joint-space-velocity measurements. IEEE Trans. Robot. 26(4), 733–742 (2010)

    Article  Google Scholar 

  20. Xu, S., Feng, G.: Further results on robust adaptive control of uncertain time-delay systems. IET Control Theory Appl. 2(5), 402–408 (2008)

    Article  MathSciNet  Google Scholar 

  21. Fateh, M.M.: Proper uncertainty bound parameter to robust control of electrical manipulators using nominal model. Nonlinear Dyn., 61(4), 655–666 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  22. Fateh, M.M.: Robust fuzzy control of electrical manipulators. J. Intell. Robot. Syst., 60(3–4), 415–434 (2010)

    Article  MATH  Google Scholar 

  23. Fateh, M.M.: On the voltage-based control of robot manipulators. Int. J. Control. Autom. Syst. 6(5), 702–712 (2008)

    Google Scholar 

  24. Fateh, M.M.: Robust voltage control of electrical manipulators in task-space. Int. J. Innov. Comput. Inf. Control 6(6), 2691–2700 (2010)

    Google Scholar 

  25. Spong, M.W., Hutchinson, S., Vidyasagar, M.: Robot Modelling and Control. Wiley, New York (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Mehdi Fateh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fateh, M.M. Nonlinear control of electrical flexible-joint robots. Nonlinear Dyn 67, 2549–2559 (2012). https://doi.org/10.1007/s11071-011-0167-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-011-0167-3

Keywords

Navigation