Skip to main content

Advertisement

Log in

Control problems of a mathematical model for schistosomiasis transmission dynamics

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Drug treatment, snail control, cercariae control, improved sanitation and health education are the effective strategies which are used to control the schistosomiasis. In this paper, we formulate a deterministic model for schistosomiasis transmission dynamics in order to explore the role of the several control strategies. The basic reproductive number is computed. Sufficient conditions for the global asymptotic stability of the disease-free equilibrium are obtained. By using the Center Manifold Theory, we analyze the local stability of endemic equilibrium. Finally, numerical simulations support our analytical conclusions and the sensitive analysis on the basic reproductive number to the changes of control parameters are shown. Our results imply that snail-killing is the most effective way to control the transmission of schistosomiasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. WHO: Schistosomiasis. http://www.who.int/mediacentre/factsheets/fs115/en/index.html (2010)

  2. Tang, C.T., Lu, M.K., Guo, Y., et al.: Development of larval schistosoma Japonicum blocked in oncomelania hupensis by pre-infection with larval exorchis SP. J. Parasitol. 95, 1321–1325 (2009)

    Article  Google Scholar 

  3. Allen, E.J., Victory, Jr.H.D.: Modelling and simulation of a schistosomiasis infection with biological control. Acta Trop. 87, 251–267 (2003)

    Article  Google Scholar 

  4. Feng, Z., Curtis, J., Minchella, D.J.: The influence of drug treatment on the maintenance of schistosome genetic diversity. J. Math. Biol. 43, 52–68 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  5. Chiyaka, E.T., Garira, W.: Mathematical analysis of the transmission dynamics of schistosomiasis in the human-snail hosts. J. Biol. Syst. 17, 367–423 (2009)

    MathSciNet  Google Scholar 

  6. Xu, D., Curtis, J., Feng, Z., et al.: On the role of schistosome mating structure in the maintenance of drug resistant strains. Bull. Math. Biol. 67, 1207–1226 (2005)

    Article  MathSciNet  Google Scholar 

  7. Capasso, V.: In: Mathematical Structure of Epidemic Systems. Lecture Notes in Biomathematics, vol. 97. Springer, Berlin (1993)

    Book  Google Scholar 

  8. Levin, S.A., Hallam, T.G., Gross, L.J.: Applied Mathematical Ecology. Springer, New York (1989)

    MATH  Google Scholar 

  9. Capasso, V., Serio, G.: A generalization of the Kermack–Mckendrick deterministic epidemic model. Math. Biosci. 42, 43–61 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  10. Holling, C.S.: The functional response of predators to prey density and its role in mimicry and population regulation. Mem. Entomol. Soc Can. 45, 1–60 (1965)

    Google Scholar 

  11. Lindström, T.: A generalized uniqueness theorem for limit cycles in a predator-prey system. Acta Acad. Abo. 49, 1–9 (1989)

    Google Scholar 

  12. Liu, W.M., Hethcote, H.W., Levin, S.A.: Dynamical behavior of epidemiological models with nonlinear incidence rates. J. Math. Biol. 25, 359–380 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  13. Liu, W.M., Levin, S.A., Iwasa, Y.: Influence of nonlinear incidence rates upon the behavior of SIRS epidemiological models. J. Math. Biol. 23, 187–204 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  14. Caraco, T., Wang, I.N.: Free living pathogens: life-history constraints and strain competition. J. Theor. Biol. 250, 569–579 (2008)

    Article  Google Scholar 

  15. Feng, Z., Eppert, A., Milner, F.A., Minchella, D.J.: Estimation of parameters governing the transmission dynamics of schistosomes. Appl. Math. Lett. 17, 1105–1112 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  16. Spear, R.C., Hubbard, A., Liang, S., Seto, E.: Disease transmission models for public health decision making: toward an approach for designing intervention strategies for Schistosomiasis japonica. Environ. Health Perspect. 10, 907–915 (2002)

    Article  Google Scholar 

  17. Mangal, T.D., Paterson, S., Fenton, A.: Predicting the impact of long-term temperature changes on the epidemiology and control of schistosomiasis: a mechanistic model. Plos ONE. www.plosone.org (2008)

  18. Castillo-Chavez, C., Feng, Z., Xu, D.: A schistosomiasis model with mating structure and time delay. Math. Biol. 211, 333–0341 (2008)

    MATH  MathSciNet  Google Scholar 

  19. Castillo-Chavez, C., Song, B.: Dynamical models of tuberculosis and their applications. Math. Biol. Eng. 1, 361–404 (2004)

    MATH  MathSciNet  Google Scholar 

  20. Diekmann, O., Heesterbeek, J.A.P.: Mathematical Epidemiology of Infectious Diseases: Model Building, Analysis and Interpretation. Wiley, New York (2000)

    Google Scholar 

  21. Castillo-Chavez, C., Feng, Z., Huangm, W.: On the computation of R0 and its role in global stability. In: Mathematical Approaches for Emerging and Re-emerging Infection Diseases: An Introduction. The IMA Volumes in Mathematics and Its Applications, vol. 125, pp. 229–250. Springer, New York (2002)

    Google Scholar 

  22. Carr, J.: Applications Centre Manifold Theory. Springer, New York (1981)

    MATH  Google Scholar 

  23. Diekmann, O., Heesterbeek, J.A.P., Metz, J.A.J.: On the definition and the computation of the basic reproduction ratio R0 in models for infectious diseases in heterogeneous population. J. Math. Biol. 28, 365–382 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  24. van den Driessche, P., Watmough, J.: Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math. Biol. 180, 29–48 (2002)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shujing Gao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gao, S., Liu, Y., Luo, Y. et al. Control problems of a mathematical model for schistosomiasis transmission dynamics. Nonlinear Dyn 63, 503–512 (2011). https://doi.org/10.1007/s11071-010-9818-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-010-9818-z

Keywords

Navigation