Skip to main content
Log in

Structure of saddle-node and cusp bifurcations of periodic orbits near a non-transversal T-point

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Non-transversal T-points have been recently found in problems from many different fields: electronic circuits, pendula, and laser problems. In this work, we study a model based on the construction of a Poincaré map that describes the behaviour of curves of saddle-node and cusp bifurcations in the vicinity of such a non-transversal T-point. This model is also able to predict, reproduce, and explain the numerical results previously obtained in Chua’s equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Algaba, A., Merino, M., Rodríguez-Luis, A.J.: Takens-Bogdanov bifurcations of periodic orbits and Arnold’s tongues in a three-dimensional electronic model. Int. J. Bifurc. Chaos Appl. Sci. Eng. 11, 513–531 (2001)

    Article  MATH  Google Scholar 

  2. Algaba, A., Fernández-Sánchez, F., Freire, E., Merino, M., Rodríguez-Luis, A.J.: Nontransversal curves of T-points: a source of closed curves of global bifurcations. Phys. Lett. A 303, 204–211 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  3. Algaba, A., Merino, M., Freire, E., Gamero, E., Rodríguez-Luis, A.J.: Some results on Chua’s equation near a triple-zero linear degeneracy. Int. J. Bifurc. Chaos Appl. Sci. Eng. 13, 583–608 (2003)

    Article  MATH  Google Scholar 

  4. Algaba, A., Merino, M., Fernández-Sánchez, F., Rodríguez-Luis, A.J.: Closed curves of global bifurcations in Chua’s equation: a mechanism for their formation. Int. J. Bifurc. Chaos Appl. Sci. Eng. 13, 609–616 (2003)

    Article  MATH  Google Scholar 

  5. Algaba, A., Merino, M., Fernández-Sánchez, F., Rodríguez-Luis, A.J.: Open-to-closed curves of saddle-node bifurcations of periodic orbits near a nontransversal T-point in Chua’s equation. Int. J. Bifurc. Chaos Appl. Sci. Eng. 16, 2637–2647 (2006)

    Article  MATH  Google Scholar 

  6. Arnold, V.I.: Singularity Theory. London Mathematical Society. Lecture Note Series, vol. 53. Cambridge University Press, Cambridge (1981)

    Google Scholar 

  7. Arrowsmith, D.K., Place, C.M.: An introduction to Dynamical Systems. Cambridge University Press, Cambridge (1994)

    MATH  Google Scholar 

  8. Bykov, V.V.: The bifurcations of separatrix contours and chaos. Physica D 62, 290–299 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  9. Champneys, A.R., Kirk, V., Knobloch, E., Oldeman, B.E., Rademacher, J.D.M.: Unfolding a tangent equilibrium-to-periodic heteroclinic cycle. SIAM J. Appl. Dyn. Syst. 8, 1261–1304 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  10. Champneys, A.R., Rodríguez-Luis, A.J.: The non-transverse Shil’nikov-Hopf bifurcation; uncoupling of homoclinic orbits and homoclinic tangencies. Physica D 128, 130–158 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  11. Doedel, E.J., Keller, H.B., Kernévez, J.P.: Numerical analysis and control of bifurcation problems (I) Bifurcation in finite dimensions. Int. J. Bifurc. Chaos Appl. Sci. Eng. 1, 493–520 (1991)

    Article  MATH  Google Scholar 

  12. Fernández-Sánchez, F.: Comportamiento dinámico y de bifurcaciones en algunas conexiones globales de equilibrios en sistemas tridimensionales (PhD Thesis) (2002)

  13. Fernández-Sánchez, F., Freire, E., Rodríguez–Luis, A.J.: Isolas, cusps and global bifurcations in an electronic oscillator. Dyn. Stab. Syst. 12, 319–336 (1997)

    MATH  Google Scholar 

  14. Fernández-Sánchez, F., Freire, E., Rodríguez–Luis, A.J.: T-points in a ℤ2-symmetric electronic oscillator. (I) Analysis. Nonlinear Dyn. 28, 53–69 (2002)

    Article  MATH  Google Scholar 

  15. Gaspard, P., Kapral, R., Nicolis, G.: Bifurcation phenomena near homoclinic systems: a two-parameter analysis. J. Stat. Phys. 35, 697–727 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  16. Glendinning, P., Sparrow, C.: T-points: A codimension two heteroclinic bifurcation. J. Stat. Phys. 43, 479–488 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  17. Golubitsky, M., Schaeffer, D.G.: Singularities and Groups in Bifurcation Theory, vol. I. Springer, Berlin (1985)

    Google Scholar 

  18. Guckenheimer, J., Holmes, P.J.: Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. Springer, New York (1983)

    MATH  Google Scholar 

  19. Hirschberg, P., Laing, C.: Sucessive homoclinic tangencies to a limit cycle. Physica D 89, 1–14 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  20. Homburg, A., Natiello, M.A.: Accumulations of T-points in a model for solitary pulses in an excitable reaction-diffusion medium. Physica D 201, 212–229 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  21. Knobloch, J., Lamb, J.S.W., Webster, K.N.: Shift dynamics near T-point heteroclinic cycles. Preprint (2007)

  22. Krauskopf, B., Oldeman, B.: Bifurcation of global reinjection orbits near a saddle-node Hopf bifurcation. Nonlinearity 19, 2149–2167 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  23. Krauskopf, B., Sieber, J.: Bifurcation analysis of an inverted pendulum with delayed feedback control near a triple-zero eigenvalue singularity. Nonlinearity 17, 85–103 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  24. Kuznetsov, Yu.: Elements of Applied Bifurcation Theory. Springer, New York (2004)

    MATH  Google Scholar 

  25. Lamb, J.S.W., Teixeira, M.A., Webster, K.: Heteroclinic cycle bifurcations near Hopf-zero bifurcation in reversible vector fields in R 3. J. Differ. Equ. 219, 78–115 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  26. Lin, X.B.: Using Melnikov’s method to solve Shilnikov’s problems. Proc. R. Soc. Edinb. A 116, 295–325 (1990)

    MATH  Google Scholar 

  27. Nayfeh, A.H., Balachandran, B.: Applied Nonlinear Dynamics. Wiley, New York (1995)

    Book  MATH  Google Scholar 

  28. Pivka, L., Wu, C.W., Huang, A.: Lorenz equation and Chua’s equation. Int. J. Bifurc. Chaos Appl. Sci. Eng. 6, 2443–2489 (1996)

    Article  MathSciNet  Google Scholar 

  29. Thom, R.: Structural Stability and Morphogenesis. Benjamin/Cummings, Reading (1980)

    Google Scholar 

  30. Wieczorek, S., Krauskopf, B.: Bifurcations of n-homoclinic orbits in optically injected lasers. Nonlinearity 18, 1095–1120 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  31. Wiggins, S.: Introduction to Applied Dynamical Systems and Chaos. Springer, New York (2003)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alejandro J. Rodríguez-Luis.

Additional information

We would like to thank the reviewers for their useful comments and suggestions. This work has been partially supported by the Ministerio de Educación y Ciencia, Plan Nacional I+D+I co-financed with FEDER funds, in the frame of the project MTM2007-64193 and by the Consejería de Educación y Ciencia de la Junta de Andalucía (FQM-276, TIC-0130 and P08-FQM-03770).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Algaba, A., Fernández-Sánchez, F., Merino, M. et al. Structure of saddle-node and cusp bifurcations of periodic orbits near a non-transversal T-point. Nonlinear Dyn 63, 455–476 (2011). https://doi.org/10.1007/s11071-010-9815-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-010-9815-2

Keywords

Navigation