Skip to main content
Log in

Proper uncertainty bound parameter to robust control of electrical manipulators using nominal model

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper focuses on the uncertainty bound parameter (UBP) to design the robust control of electrical manipulators. The UBP is commonly obtained by considering the worst case of uncertainties in bounding functions. However, too high estimation of UBP may cause saturation of input, higher frequency of chattering in the switching control laws, and thus a bad behavior of the whole system, while too low estimation of UBP may cause a higher tracking error. A proper UBP is preferred to improve the performance of robust control system. A simple, less dependent and proper UBP is proposed based on the nominal model of electrical manipulator and feedbacks of joint accelerations. This work is motivated by recent experimental results in measuring acceleration by optical encoder. Modeling of an electrical manipulator with presence of uncertainties is presented for control purposes. The proposed robust control is justified by stability analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Abdallah, C., Dawson, D., Dorato, P., Jamshidi, M.: Survey of robust control for rigid robots. IEEE Control Syst. Mag. 11, 24–30 (1991)

    Article  Google Scholar 

  2. Corless, M.J.: Control of uncertain nonlinear systems. ASME Trans. J. Dyn. Syst. Meas. Control 115(2B), 362–372 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  3. Qu, Z., Dawson, D.M.: Robust Tracking Control of Robot Manipulators. IEEE Press, New York (1996)

    MATH  Google Scholar 

  4. Sage, H.G., De Mathelin, M.F., Ostertag, E.: Robust control of robot manipulators: a survey. Int. J. Control 72(16), 1498–1522 (1999)

    Article  MATH  Google Scholar 

  5. Slotine, J.J.E., Li, W.: Applied Nonlinear Control. Prentice Hall International, Englewood Cliffs (1991)

    MATH  Google Scholar 

  6. Liu, C., Cheah, C.C., Slotine, J.J.E.: Adaptive Jacobian tracking control of rigid-link electrically driven robots based on visual task-space information. Automatica 42, 1491–1501 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  7. Fateh, M.M.: On the voltage-based control of robot manipulators. Int. J. Control Autom. Syst. 6(5), 702–712 (2008)

    Google Scholar 

  8. Corless, M., Leitmann, G.: Continuous state feedback guaranteeing uniform ultimate boundedness for uncertain dynamics systems. IEEE Trans. Autom. Control 26, 1139–1144 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  9. Leitmann, G.: On the efficacy of nonlinear control in uncertain linear systems. ASME Trans. J. Dyn. Syst. Meas. Control 102, 95–102 (1981)

    Article  MathSciNet  Google Scholar 

  10. Spong, M.W.: Motion control of robot manipulators. In: Handbook of Control, pp. 1339–1350. CRC Press, Boca Raton (1996)

    Google Scholar 

  11. Spong, M.W.: On the robust control of robot manipulators. IEEE Trans. Automat. Control 37, 1782–1786 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  12. Torres, S., Mendez, J.A., Acosta, L., Becerra, V.M.: On improving the performance in robust controllers for robot manipulators with parametric disturbances. Control Eng. Pract. 15, 557–566 (2007)

    Article  Google Scholar 

  13. Burkan, R., Uzmay, I.: Upper bounding estimation for robustness to the parameter uncertainty in trajectory control of robot arm. Robot. Autonom. Syst. 45, 99–110 (2003)

    Article  Google Scholar 

  14. Dawson, D.M., Qu, Z., Carroll, J.J.: Tracking control of rigid link electrically-driven robot manipulators. Int. J. Control 56, 991–1006 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  15. Miro, J.V., White, A.S.: Modelling an industrial manipulator a case study. Simul. Pract. Theory 9, 293–319 (2002)

    Article  MATH  Google Scholar 

  16. Spong, M.W., Hutchinson, S., Vidyasagar, M.: Robot Modelling and Control. Wiley, New York (2006)

    Google Scholar 

  17. Klafter, R.D., Chmielewski, T.A., Negin, M.: Robotic Engineering: An Integrated Approach. Prentice-Hall, New York (1989)

    Google Scholar 

  18. Jaritz, A., Spong, M.W.: An experimental comparison of robust control algorithms on a direct drive manipulator. IEEE Trans. Control Syst. Technol. 6(4), 627–640 (1996)

    Article  Google Scholar 

  19. Mcinroy, J.E., Saridis, G.N.: Acceleration and torque feedback for robotic control: experimental results. J. Robot. Syst. 7, 813–832 (1990)

    Article  Google Scholar 

  20. Dumetz, E., Dieulot, J.Y., Barre, P.J., Colas, F., Delplace, T.: Control of an industrial robot using acceleration feedback. J. Intell. Robot. Syst. 46, 111–128 (2006)

    Article  Google Scholar 

  21. Tsuji, T., Kobayashi, H.: Robust acceleration control based on acceleration measurement using optical encoder. In: IEEE International Symposium on Industrial Electronics, 4–7 June 2007, Vigo, Spain, pp. 3108–3113 (2007)

  22. Tsuji, T., Mizuochi, M., Nishi, H., Ohnishi, K.: A velocity measurement method for acceleration control. In: Proceedings of International Conference on Industrial Electronics, Control and Instrumentation, pp. 1943–1948 (2005)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Mehdi Fateh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fateh, M.M. Proper uncertainty bound parameter to robust control of electrical manipulators using nominal model. Nonlinear Dyn 61, 655–666 (2010). https://doi.org/10.1007/s11071-010-9677-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-010-9677-7

Keywords

Navigation