Skip to main content
Log in

Low-Dimensional Modelling of Turbulence Using the Proper Orthogonal Decomposition: A Tutorial

  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The proper orthogonal decomposition identifies basis functions or modes which optimally capture the average energy content from numerical or experimental data. By projecting the Navier–Stokes equations onto these modes and truncating, one can obtain low-dimensional ordinary differential equation models for fluid flows. In this paper we present a tutorial on the construction of such models. In addition to providing a general overview of the procedure, we describe two different ways to numerically calculate the modes, show how symmetry considerations can be exploited to simplify and understand them, comment on how parameter variations are captured naturally in such models, and describe a generalization of the procedure involving projection onto uncoupled modes that allow streamwise and cross-stream components to evolve independently. We illustrate for the example of plane Couette flow in a minimal flow unit – a domain whose spanwise and streamwise extent is just sufficient to maintain turbulence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Anderson, E., Bai, Z., Bischof, C., Blackford, S., Demmel, J., Dongarra, J., Croz, D. J., Greenbaum, A., Hammarling, S., McKenney, A., and Sorenson, D., LAPACK User’s Guide, Third Edition, Society for Industrial and Applied Mathematics, Philadelphia, PA, 1999.

    Google Scholar 

  2. Aubry, N., ‘A Dynamical System/Coherent Structure Approach to the Fully Developed Turbulent Wall Layer’, PhD thesis, Cornell University, 1987.

  3. Aubry, N., Holmes, P., Lumley, J. L., and Stone, E., ‘The dynamics of coherent structures in the wall region of the turbulent boundary layer’, Journal of Fluid Mechanics 192, 1988, 115–173.

    Google Scholar 

  4. Aubry, N., Lian, W.-Y., and Titi, E. S., ‘Preserving symmetries in the proper orthogonal decomposition’, SIAM Journal on Scientific Computing 14, 1993, 483–505.

    Article  Google Scholar 

  5. Baggett, J. S., Driscoll, T. A., and Trefethen, L. N., ‘A mostly linear model of transition to turbulence’, Physics of Fluids 7, 1995, 833–838.

    Article  CAS  Google Scholar 

  6. Baggett, J. S. and Trefethen, L. N., ‘Low-dimensional models of subcritical transition to turbulence’, Physics of Fluids 9, 1997, 1043–1053.

    Article  CAS  Google Scholar 

  7. Bech, K. H., Tillmark, N., Alfredsson, P. H., and Andersson, H. I., ‘An investigation of turbulent plane Couette flow at low Reynolds numbers’, Journal of Fluid Mechanics 286, 1995, 291–325.

    Google Scholar 

  8. Berkooz, G., Holmes, P., and Lumley, J. L., ‘Intermittent dynamics in simple models of the wall layer’, Journal Fluid Mechanics 230, 1991, 75–95.

    CAS  Google Scholar 

  9. Berkooz, G., Holmes, P., and Lumley, J. L., ‘The proper orthogonal decomposition in the analysis of turbulent flows’, Annual Review of Fluid Mechanics 25, 1993, 539–575.

    Article  Google Scholar 

  10. Berkooz, G. and Titi, E. S., ‘Galerkin projections and the proper orthogonal decomposition for equivariant equations’, Physics Letters A 174, 1993, 94–102.

    Article  Google Scholar 

  11. Brown, G. L. and Roshko, A., ‘On density effects and large structures in turbulent mixing layers’, Journal Fluid Mechanics 64, 1974, 775–816.

    Google Scholar 

  12. Chossat, P. and Lauterbach, R., Methods in Equivariant Bifurcations and Dynamical Systems, World Scientific, Singapore, 2000.

    Google Scholar 

  13. Clever, R. M. and Busse, F. H., ‘Three-dimensional convection in a horizontal fluid layer subjected to a constant shear’, Journal of Fluid Mechanics 234, 1992, 511–527.

    CAS  Google Scholar 

  14. Crawford, J. D. and Knobloch, E., ‘Symmetry and symmetry-breaking bifurcations in fluid mechanics’, Annual Review of Fluid Mechanics 23, 1991, 341–387.

    Google Scholar 

  15. Dauchot, O. and Daviaud, F., ‘Finite amplitude perturbation and spots growth mechanism in plane Couette flow’, Physics of Fluids 7(2), 1995, 335–343.

    Article  CAS  Google Scholar 

  16. Dauchot, O. and Daviaud, F., ‘Streamwise vortices in plane Couette flow’, Physics of Fluids 7, 1995, 901–903.

    Article  CAS  Google Scholar 

  17. Dellnitz, M., Golubitsky, M., and Nicol, M., ‘Symmetry of attractors and the Karhunen-Loève decomposition’, in Trends and Perspectives in Applied Mathematics, L. Sirovich (ed.), Springer-Verlag, Berlin, 1994, pp. 73–108.

    Google Scholar 

  18. Drazin, P. G. and Reid, W. H., Hydrodynamic Stability, Cambridge University Press, Cambridge, UK, 1981.

    Google Scholar 

  19. Gibson, J., ‘Dynamical Systems Models of Wall-Bounded, Shear-Flow Turbulence’, PhD thesis, Cornell University, 2002.

  20. Golubitsky, M. and Stewart, I., The Symmetry Perspective, Birkhauser Verlag, Basel, 2002.

    Google Scholar 

  21. Golubitsky, M., Stewart, I., and Schaeffer, D. G., Singularities and Groups in Bifurcation Theory, Vol. II, Springer-Verlag, New York, 1988.

    Google Scholar 

  22. Hamilton, J., Kim, J., and Waleffe, F., ‘Regeneration mechanisms of near-wall turbulence structures’, Journal of Fluid Mechanics 287, 1995, 317–348.

    Google Scholar 

  23. Herzog, S., ‘The Large Scale Structure in the Near Wall Region of a Turbulent Pipe Flow’, PhD thesis, Cornell University, 1986.

  24. Holmes, P., ‘Can dynamical systems approach turbulence’? in Whither Turbulence? Turbulence at the Crossroads, J. L. Lumley (ed.), Springer-Verlag, New York, 1990, pp. 195–249.

    Google Scholar 

  25. Holmes, P., Lumley, J. L., and Berkooz, G., Turbulence, Coherent Structures, Dynamical Systems and Symmetry, Cambridge University Press, Cambridge, UK, 1996.

    Google Scholar 

  26. Holmes, P., Lumley, J. L., Berkooz, G., Mattingly, J. C., and Wittenberg, R. W., ‘Low-dimensional models of coherent structures in turbulence’, Physics of Reports 287, 1997, 337–384.

    Article  CAS  Google Scholar 

  27. Kline, S. J., ‘The structure of turbulent boundary layers’, Journal of Fluid Mechanics 30, 1967, 741–173.

    Google Scholar 

  28. Komminaho, J., Lundbladh, A., and Johansson, A. V., ‘Very large structures in plane turbulent Couette flow’, Journal of Fluid Mechanics 320, 1996, 259–285.

    Google Scholar 

  29. Kwasniok, F., ‘The reduction of complex dynamical systems using principal interaction patterns’, Physica D 92, 1996, 28–60.

    Google Scholar 

  30. Kwasniok, F., ‘Optimal Galerkin approximations of partial differential equations using principal interaction patterns’, Physical Review E 55, 1997, 5365–5375.

    Article  CAS  Google Scholar 

  31. Kwasniok, F., ‘Low-dimensional models of the Ginzburg–Landau equation’, SIAM Journal of Applied Mathematics 61, 2001, 2063–2079.

    Article  Google Scholar 

  32. Lomont, J. S., Applications of Finite Groups, Dover, New York, 1993.

    Google Scholar 

  33. Lumley, J. L., ‘The structure of inhomogeneous turbulence’, in Atmospheric Turbulence and Wave Propagation, A. M. Yaglom and V. I. Tatarski (eds.), Nauka, Moscow, 1967, pp. 166–78.

    Google Scholar 

  34. Moehlis, J., Smith, T. R., Holmes, P., and Faisst, H., ‘Models for turbulent plane Couette flow using the proper orthogonal decomposition’, Physics of Fluids 14(7), 2002, 2493–2507.

    Article  CAS  Google Scholar 

  35. Moffatt, H. K., ‘Fixed points of turbulent dynamical systems and suppression of nonlinearity’, in Whither Turbulence? Turbulence at the Crossroads, J. L. Lumley (ed.), pp. 250–257. Springer-Verlag, New York, 1990.

    Google Scholar 

  36. Moin, P. and Moser, R. D., ‘Characteristic-eddy decomposition of turbulence in a channel’, Journal of Fluid Mechanics 200, 1989, 471–509.

    MathSciNet  Google Scholar 

  37. Nagata, M., ‘Three-dimensional finite-amplitude solutions in plane Couette flow: Bifurcation from infinity’, Journal of Fluid Mechanics 217, 1990, 519–527.

    CAS  Google Scholar 

  38. Rowley, C. W., Colonius, T., and Murray, R. M., ‘Dynamical models for control of cavity oscillations’, AIAA Paper 2001–2126, 2001, pp. 2126–2134.

  39. Rowley, C. W., Kevrekidis, I., Marsden, J., and Lust, K., ‘Reduction and reconstruction for self-similar dynamical systems’, Nonlinearity 16, 2003, 1257–1275.

    Article  Google Scholar 

  40. Rowley, C. W. and Marsden, J. E., ‘Reconstruction equations and the Karhuhnen-Loève expansion for systems with symmetry’, Physica D 142, 2000, 1–19.

    Google Scholar 

  41. Schmiegel, A., ‘Transition to Turbulence in Linearly Stable Shear Flows’, PhD thesis, Universität Marburg, 1999.

  42. Sirovich, L., ‘Turbulence and the dynamics of coherent structures, parts I–III’, Quarterly Applied Mathematics XLV(3), 1987, 561–582.

    Google Scholar 

  43. Smaoui, N. and Armbruster, D., ‘Symmetry and the Karhunen–Loève analysis’, SIAM Journal of Scientific Computation 18, 1997, 1526–1532.

    Article  Google Scholar 

  44. Smith, T. and Holmes, P., ‘Low dimensional models with varying parameters: A model problem and flow through a diffuser with variable angle’, in Fluid Mechanics and the Environment: Dynamical Approaches, J. L. Lumley (ed.), Vol. 566 of Lecture Notes in Physics, Springer-Verlag, New York, 2001, pp. 315–336.

    Google Scholar 

  45. Smith, T. R., ‘Low-dimensional Models of Plane Couette Flow using the Proper Orthogonal Decomposition’, PhD thesis, Princeton University, 2003.

  46. Smith, T. R., Moehlis, J., and Holmes, P., ‘Low-dimensional models for turbulent plane Couette flow in a minimal flow unit’, to appear in Journal of Fluid Mechanics.

  47. Tennekes, H. and Lumley, J. L., A First Course in Turbulence. MIT Press, Cambridge, MA, 1972.

    Google Scholar 

  48. Waleffe, F., ‘Transition in shear flows. Nonlinear normality versus non-normal linearity’, Physics of Fluids 7(12), 1995, 3060–3066.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to PHILIP HOLMES.

Rights and permissions

Reprints and permissions

About this article

Cite this article

SMITH, T.R., MOEHLIS, J. & HOLMES, P. Low-Dimensional Modelling of Turbulence Using the Proper Orthogonal Decomposition: A Tutorial. Nonlinear Dyn 41, 275–307 (2005). https://doi.org/10.1007/s11071-005-2823-y

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-005-2823-y

Key Words

Navigation