Skip to main content

Advertisement

Log in

Anthropogenic sinkholes of the city of Naples, Italy: an update

  • Original Paper
  • Published:
Natural Hazards Aims and scope Submit manuscript

Abstract

In recent years, the study of anthropogenic sinkholes in densely urbanized areas has attracted the attention of both researchers and land management entities. The city of Naples (Italy) has been frequently affected by processes generating such landforms in the last decades: for this reason, an update of the sinkhole inventory and a preliminary susceptibility estimation are proposed in this work. Starting from previous data, not modified since 2010, a total of 270 new events occurred in the period February 2010–June 2021 were collected through the examination of online newspapers, local daily reports, council chronicle news and field surveys. The final consistence of the updated inventory is of 458 events occurred between 1880 and 2021, distributed through time with an increasing trend in frequency. Spatial analysis of sinkholes indicates a concentration in the central sector of the city, corresponding to its ancient and historic centre, crossed by a dense network of underground tunnels and cavities. Cavity-roof collapse is confirmed as one of the potential genetic types, along with processes related to rainfall events and service lines damage. A clear correlation between monthly rainfall and the number of triggered sinkholes was identified. Finally, a preliminary sinkhole susceptibility assessment, carried out by Frequency Ratio method, confirms the central sector of city as that most susceptible to sinkholes and emphasizes the predisposing role of service lines, mostly in the outermost areas of the city.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

Data and materials are available under motivated request.

References

  • Albertini V, Baldi A, Bartoli L, Collini F, Esposito C, Guerra V, Miraglino P, Schiattarella F, Vallario A (1988) Le cavità sotterranee del napoletano: pericolosità e possibili utilizzazioni. Geol Tec 3:54–63 (in Italian)

    Google Scholar 

  • Allocca V, Angrisani AC, Coda S, Danzi M, De Vita P, Del Vecchio U, Di Martire D, Massa D, Minin G, Nocerino G, Calcaterra D (2018) 3D reconstruction through a lightweight hand-held laser scanner of an underground cavity located in the SS. Marcellino and Festo Monumental Complex (Napoli, Italy). In: Proceedings of the Cavità di origine antropica, modalità d’indagine, aspetti di catalogazione, analisi della pericolosità, monitoraggio e valorizzazione. Geologia dell’Ambiente, Periodico trimestrale della SIGEA. Supplemento al n 4/2018 (in Italian)

  • Amato L, Carsana V, Cinque A, Di Donato V, Giampaola D, Guastaferro C, Irollo G, Morhange C, Romano P, Ruello MR, Russo Ermolli E (2009) Ricostruzioni morfoevolutive nel territorio di Napoli: l’evoluzione tardo pleistocenica-olocenica e le linee di riva di epoca storica. Méditerranée 112:23–31 (In Italian)

    Article  Google Scholar 

  • Ammirati L, Mondillo N, Rodas RA, Sellers C, Di Martire D (2020) Monitoring land surface deformation associated with gold artisanal mining in the Zaruma City (Ecuador). Remote Sensing 12(13):2135. https://doi.org/10.3390/rs12132135

    Article  Google Scholar 

  • Basso N, Ciotoli G, Finoia MG, Guarino PM, Miraglino P, Nisio S (2013) Suscettibilità a fenomeni di sinkholes antropogenici nel territorio di Napoli. Mem Descr Carta Geol D’it 93:73–104 (In Italian)

    Google Scholar 

  • Beck BF, Jenkins DT (1986) Geotechnical considerations of sinkhole development in Florida. In: International symposium of environmental geotechnology, p 8

  • Bekendam RF (1998) Pillar stability and large-scale collapse of abandoned room and pillar limestone mines in South-Limburg, the Netherlands. University of Utrecht (PhD thesis)

  • Bellucci F, Corniello A, De Riso R (1993) Geology and hydrogeology of the Somma-Vesuvio volcano (Southern Italy). IAH Memoires 24(1):137–149

    Google Scholar 

  • Bétournay MC (2009) Abandoned metal mine stability risk evaluation. Risk Anal 29(10):1355–1370

    Article  Google Scholar 

  • Bonham-Carter GF (1994) Geographic information systems for geoscientists: modeling with GIS. Pergamon Press, Oxford, pp 398–403

    Google Scholar 

  • Brancaccio L, Cinque A, Romano P, Rosskopf C, Russo F, Santangelo N, Santo A (1991) Geomorphology and neotectonic evolution of a sector of the Tyrrhenian flank of the Southern Apennines (Region of Naples, Italy). Zeitschrift Für Geomorphologie, Neue Folge 82:47–58

    Google Scholar 

  • Brinkmann R, Parise M, Dye D (2008) Sinkhole distribution in a rapidly developing urban environment: Hillsborough County, Tampa Bay area. Florida Eng Geol 99(3–4):169–184

    Article  Google Scholar 

  • Cando Jácome M, Martinez-Graña AM, Valdés V (2020) Detection of Terrain deformations using InSAR techniques in relation to results on Terrain subsidence (Ciudad de Zaruma, Ecuador). Remote Sens 12(10):1598

    Article  Google Scholar 

  • Cennamo C, Angelillo M, Cusano C (2017) Structural failures due to anthropogenic sinkholes in the urban area of Naples and the effect of a FRP retrofitting. Compos B Eng 108:190–199. https://doi.org/10.1016/j.compositesb.2016.09.043

    Article  Google Scholar 

  • Choi JK, Kim KD, Lee S, Won JS (2010) Application of a fuzzy operator to susceptibility estimations of coal mine subsidence in Taebaek City, Korea. Environ Earth Sci 59:1009–1022

    Article  Google Scholar 

  • Cinque A, Irollo G, Romano P, Ruello MR, Amato L, Giampaola D (2011) Ground movements and sea level changes in urban areas: 5000 years of geological and archaeological record from Naples (Southern Italy). Quatern Int 232(1–2):45–55. https://doi.org/10.1016/j.quaint.2010.06.027

    Article  Google Scholar 

  • Ciotoli G, Corazza A, Finoia MG, Nisio S, Serafini R, Succhiarelli C (2013) Sinkholes antropogenici nel territorio di Roma Capitale. I Sinkholes: metodologie di indagine, ricerca storica, sistemi di monitoraggio e tecniche di intervento. Centri abitati e processi di instabilità naturale: valutazione, controllo e mitigazione. Mem Descr Carta Geol D’it 93:143–181 (in Italian)

    Google Scholar 

  • Clemente M, Castagnaro A, Oppido S, Daldanise G (2015) Cultural heritage and collaborative urban regeneration: the Sansevero chapel museum for the historic centre of Naples. BDC Bollettino Del Centro Calza Bini 15(1):93–112

    Google Scholar 

  • D’Argenio B, Pescatore T, Scandone P (1973) Schema geologico dell’Appennino meridionale (Campania e Lucania). Atti del Conv. Moderne vedute sulla geologia dell’Appennino. Acc Nazion Lincei 182:49–72 (In Italian)

    Google Scholar 

  • Del Prete S, Iovine G, Parise M, Santo A (2010) Origin and distribution of different types of sinkholes in the plain areas of Southern Italy. Geodin Acta 23(1–3):113–127. https://doi.org/10.3166/ga.23.113-127

    Article  Google Scholar 

  • Dixon SJ, Viles H, Garrett B (2018) Ozymandias in the anthropocene: the city as an emerging landform. Area 50:117–125. https://doi.org/10.1111/area.12358

    Article  Google Scholar 

  • Evangelista A, Aversa S, Pescatore TS, Pinto F (2000) Soft rocks in southern Italy and role of volcanic tuffs in the urbanization of Naples. In: Proceedings of the II international symposium on ‘The Geotechnics of Hard Soils and Soft Rocks’, Napoli, vol 3, pp 1243–1267

  • Evangelista A, Flora A, Lirer S, De Sanctis F, Lombardi G (2002) Studi ed interventi per la tutela di un patrimonio sotterraneo: l'esempio delle cavità di Napoli. L'Aquila, XXI Convegno Nazionale di Geotecnica, Patron Ed., Bologna, pp 579–588 (in Italian)

  • Fazio NL, Perrotti M, Lollino P, Parise M, Vattano M, Madonia G, Di Maggio C (2017) A three-dimensional back-analysis of the collapse of an underground cavity in soft rocks. Eng Geol 228:301–311. https://doi.org/10.1016/j.enggeo.2017.08.014

    Article  Google Scholar 

  • Galeazzi C (2013) The typological tree of artificial cavities: a contribution by the Commission of the Italian Speleological Society. Opera Ipogea 1:9–18

    Google Scholar 

  • Galloway D, Jones DR, Ingebritsen SE (1999) Land sunbsidence in the United States, vol 1182. U.S. Geological Survey. Circular, Reston.

  • Galve J, Gutiérrez F, Lucha P, Guerrero J, Bonachea J, Remondo J, Cendrero A (2009) Probabilistic sinkhole modelling for hazard assessment. Earth Surf Proc Land 34:437–452

    Article  Google Scholar 

  • Gao Y, Luo W, Jiang X, Lei M, Dai J (2013) Investigations of large scale sinkhole collapses, Laibin, Guangxi, China. In: Proceedings of the 13th multidisciplinary conference on sinkholes and the engineering and environmental impacts of karst: NCKRI symposium 2, pp 327–331

  • Guarino PM, Nisio S (2012) Anthropogenic sinkholes in the territory of the city of Naples (Southern Italy). Phys Chem Earth Parts a/b/c 49:92–102. https://doi.org/10.1016/j.pce.2011.10.023

    Article  Google Scholar 

  • Guarino PM, Santo A, Forte G, De Falco M, Niceforo DMA (2018) Analysis of a database for anthropogenic sinkhole triggering and zonation in the Naples hinterland (Southern Italy). Nat Hazards 91(1):173–192. https://doi.org/10.1007/s11069-017-3054-5

    Article  Google Scholar 

  • Gutiérrez F, Cooper AH, Johnson KS (2008) Identification, prediction and mitigation of sinkhole hazards in evaporite karst areas. Environ Geol 53:1007–1022. https://doi.org/10.1007/s00254-007-0728-4

    Article  Google Scholar 

  • Gutiérrez F, Parise M, De Waele J, Jourde H (2014) A review on natural and human-induced geohazards and impacts in karst. Earth Sci Rev 138:61–88. https://doi.org/10.1016/j.earscirev.2014.08.002

    Article  Google Scholar 

  • Hatzor YH, Talesncik M, Tsesarsky M (2002) Continuous and discontinuous stability analysis of the bell-shaped caverns at Bet Guvrin, Israel. Int J Rock Mech Min Sci 39:867–886

    Article  Google Scholar 

  • Heidari M, Khanlari GR, Beydokhti AT, Momeni AA (2011) The formation of cover collapse sinkholes in North of Hamedan. Iran Geomorphol 132(3–4):76–86. https://doi.org/10.1093/acrefore/9780199389407.013.40

    Article  Google Scholar 

  • Hermosilla RG (2012) The Guatemala City sinkhole collapses. Carbonates Evaporites 27(2):103–107

    Article  Google Scholar 

  • Iovine G, Vennari C, Gariano SL, Caloiero T, Lanza G, Nicolino N et al (2016) The “Piano dell’Acqua” sinkholes (San Basile, Northern Calabria, Italy). Bull Eng Geol Env 75(1):37–52

    Article  Google Scholar 

  • ISTAT (2019) Censimento della popolazione del 2011. http://censimentopopolazione.istat.it/. (in Italin)

  • Jenks GF (1967) The data model concept in statistical mapping. Int Yearbook Cartogr 7:186–190

    Google Scholar 

  • Jiang X, Lei M, Li Y, Dai J (2005) National-scale risk assessment of sinkhole hazard in China. In: Sinkholes and the engineering and environmental impacts of Karst, pp 649–658

  • Karimi H, Taheri K (2010) Hazards and mechanism of sinkholes on Kabudar Ahang and Famenin plains of Hamadan. Iran Nat Hazards 55(2):481–499. https://doi.org/10.1007/s11069-010-9541-6

    Article  Google Scholar 

  • Kim KD, Lee S, Oh HJ, Choi JK, Won JS (2006) Assessment of ground subsidence hazard near an abandoned underground coal mine using GIS. Environ Geol 50:1183–1191

    Article  Google Scholar 

  • Kim KD, Lee S, Oh HJ (2009) Prediction of ground subsidence in Samcheok City, Korea using artificial neural networks and GIS. Environ Geol 58:61–70

    Article  Google Scholar 

  • Kim YJ, Xiao H, Wang D, Choi YW, Nam BH (2017) Development of sinkhole hazard mapping for Central Florida. Geotech Front 2017:459–468

    Article  Google Scholar 

  • Kim K, Kim J, Kwak TY, Chung CK (2018) Logistic regression model for sinkhole susceptibility due to damaged sewer pipes. Nat Hazards 93(2):765–785

    Article  Google Scholar 

  • Lei M, Gao Y, Jiang X, Hu Y (2005) Experimental study of physical models for sinkhole collapses in Wuhan, China. In: Sinkholes and the engineering and environmental impacts of Karst, pp 91–102

  • Li LH, Yang ZF, Yue ZQ, Zhang LQ (2009) Engineering geological characteristics, failure modes and protective measures of Longyou rock caverns of 2000 years old. Tunnel Underground Space Technol 24:190–207

    Article  Google Scholar 

  • Lollino P, Martimucci V, Parise M (2013) Geological survey and numerical modeling of the potential failure mechanisms of underground caves. Geosyst Eng 16(1):100–112. https://doi.org/10.1080/12269328.2013.780721

    Article  Google Scholar 

  • Lombardi G, Feola A, Miraglino P (2010) Interventi per la mitigazione del rischio idrogeologico della città di Napoli. Geologi 28:7–17 (In Italian)

    Google Scholar 

  • Mancini F, Stecchi F, Gabbianelli G (2009) GIS-based assessment of risk due to salt mining activities at Tuzla (Bosnia and Herzegovina). Eng Geol 109:170–182

    Article  Google Scholar 

  • Milia A, Torrente MM, Russo M, Zuppetta A (2003) Tectonics and crustal structure of the Campania continental margin: relationships with volcanism. Mineral Petrol 79(1–2):33–47. https://doi.org/10.1007/s00710-003-0005-5

    Article  Google Scholar 

  • Morra V, Calcaterra D, Cappelletti P, Colella A, Fedele L, de' Gennaro R, Langella A, Mercurio M, de' Gennaro M (2010) Urban geology: relationships between geological setting and architectural heritage of the Neapolitan area. In: Marco B, Angelo P, Massimo M, Sandro C, Carlo D (eds) The geology of Italy: tectonics and life along plate margins. J Virt Expl Electron Edn. ISSN 1441-8142, vol 36(27). https://doi.org/10.3809/jvirtex.2010.00261

  • Newton JG (1984) Natural and induced sinkhole development in the eastern United States. In: Proceedings of the third international symposium on land subsidence, international association of hydrological sciences. Wallingford, UK, pp 549–564

  • Nicotera P, Lucini P (1967) La costituzione geologica del sottosuolo di Napoli nei riguardi dei problemi. Atti dell’VIII Convegno di Geotecnica. Cagliari, pp 45–111 (in Italian)

  • Nisio S, Caramanna G, Ciotoli G (2007) Sinkholes in Italy: first results on the inventory and analysis. Geol Soc Lond Spec Publ 279(1):23–45. https://doi.org/10.1144/SP279.4

    Article  Google Scholar 

  • Oh HJ, Lee S (2011) Integration of ground subsidence hazard maps of abandoned coal mines in Samcheok. Korea Int J Coal Geol 86(1):58–72

    Article  Google Scholar 

  • Orsi G, Di Vito MA, Isaia R (2004) Volcanic hazard assessment at the restless Campi Flegrei caldera. Bull Volcanol 66:514–530. https://doi.org/10.1007/s00445-003-0336-4

    Article  Google Scholar 

  • Ozdemir A (2015) Investigation of sinkholes spatial distribution using the weights of evidence method and GIS in the vicinity of Karapinar (Konya, Turkey). Geomorphology 245:40–50. https://doi.org/10.1016/j.geomorph.2015.04.034

    Article  Google Scholar 

  • Ozdemir A (2016) Sinkhole susceptibility mapping using logistic regression in Karapınar (Konya, Turkey). Bull Eng Geol Env 75(2):681–707. https://doi.org/10.1007/s10064-015-0778-x

    Article  Google Scholar 

  • Parise M (2012) A present risk from past activities: sinkhole occurrence above underground quarries. Carbon Evap 27(2):109–118

    Article  Google Scholar 

  • Parise M, Lollino P (2011) A preliminary analysis of failure mechanisms in karst and man-made underground caves in Southern Italy. Geomorphology 134(1–2):132–143. https://doi.org/10.1016/j.geomorph.2011.06.008

    Article  Google Scholar 

  • Parise M, Gunn J (2007) Natural and anthropogenic hazards in karst areas: recognition, analysis and mitigation. Special Publications 279(1). The Geological Society of London, London, UK. ISBN 978-1-86239-224-3. https://doi.org/10.1144/SP279

  • Parise M, Vennari C (2013) A chronological catalogue of sinkholes in Italy: the first step toward a real evaluation of the sinkhole hazard. In: Land L, Doctor DH, Stephenson B (eds) Proceedings 13th multidisciplinary conference on sinkholes and the engineering and environmental impacts of Karst, Carlsbad (New Mexico, USA). Natl Cave Karst Res Inst, pp 383–392. https://doi.org/10.5038/9780979542275.1149

  • Parise M, Galeazzi C, Bixio R, Dixon M (2013) Classification of artificial cavities: a first contribution by the UIS Commission. In: Filippi M, Bosak P (eds) Proceedings 16th international congress of speleology, Brno, 21–28 July 2013, 2, pp 230–235

  • Parise M (2011) Sinkholes caused by underground quarries in Apulia, southern Italy. In: Proceedings 12th multidisciplinary conference on sinkholes and the engineering and environmental impact of Karst, St. Louis, Missouri, January 10–14, 2011 (Program with Abstracts, 23)

  • Parise M (2015) A procedure for evaluating the susceptibility to natural and anthropogenic sinkholes. Georisk Assess Manage Risk Eng Syst Geohaz 9(4):272–285. https://doi.org/10.1080/17499518.2015.1045002

  • Pellicani R, Spilotro G, Gutiérrez F (2017) Susceptibility mapping of instability related to shallow mining cavities in a built-up environment. Eng Geol 217:81–88. https://doi.org/10.1016/j.enggeo.2016.12.011

    Article  Google Scholar 

  • Pradhan B, Abokharima MH, Jebur MN, Tehrany MS (2014) Subsidence susceptibility mapping at Kinta Valley (Malaysia) using the evidential belief function model in GIS. Nat Hazards 73(2):1019–1042

    Article  Google Scholar 

  • Rispoli C, Di Martire D, Calcaterra D, Cappelletti P, Graziano SF, Guerriero L (2020) Sinkholes threatening places of worship in the historic center of Naples. J Cult Herit 46:313–319. https://doi.org/10.1016/j.culher.2020.09.009

    Article  Google Scholar 

  • Rogers CJ (1986) Sewer deterioration studies: the background to the structural assessment procedure in the sewer rehabilitation manual (2nd edn). WRc report ER199E

  • Scarpati C, Cole P, Perrotta A (1993) The Neapolitan Yellow Tuff—a large volume multiphase eruption from Campi Flegrei, southern Italy. Bull Volcanol 55(5):343–356. https://doi.org/10.1007/BF00301145

    Article  Google Scholar 

  • Scarpati C, Perrotta A, Lepore S, Calvert A (2013) Eruptive history of Neapolitan volcanoes: constraints from 40Ar-39Ar dating. Geol Mag 150(3):412–425. https://doi.org/10.1017/S0016756812000854

    Article  Google Scholar 

  • Scotto di Santolo A, Evangelista L, Silvestri F, Cavuoto G, Di Fiore V, Punzo M, Tarallo D, Evangelista A (2015) Investigations on the stability conditions of a tuff cavity: the Cimitero delle Fontanelle in Naples. Rivista Italiana Di Geotecnica XLIX 3:28–46

    Google Scholar 

  • Scotto di Santolo A, Forte G, De Falco M, Santo A (2016) Sinkhole risk assessment in the metropolitan area of Napoli, Italy. Proc Eng 158:458–463. https://doi.org/10.1016/j.proeng.2016.08.472

    Article  Google Scholar 

  • Scotto di Santolo A, Forte G, Santo A (2018) Analysis of sinkhole triggering mechanisms in the hinterland of Naples (southern Italy). Eng Geol 237:42–52. https://doi.org/10.1016/j.enggeo.2018.02.014

    Article  Google Scholar 

  • Shalev E, Lyakhovsky V (2012) Viscoelastic damage modeling of sinkhole formation. J Struct Geol 42:163–170

    Article  Google Scholar 

  • Sinclair WC, Stewart JW (1985) Sinkhole type, development, and distribution in Florida. Bureau of Geology, Map Series (Tallahassee), vol 110. Florida Department of Natural Resources, Division of Resource Management, Bureau of Geology, Tallahassee, FL, United States. ISSN: 0085-0624

  • Snyder SW, Evans MW, Hine AC, Compton JS (1989) Seismic expression of solution collapse features from the Florida Platform. In: Multidisciplinary conference on sinkholes and the engineering and environmental impacts of karst, vol 3, pp 281–298

  • Sottile R (2016) Census and geological study of the anthropogenic sinkholes in the urban area of Palermo (Southern Italy). University of the Study of Siena (PhD thesis).

  • Subedi P, Subedi K, Thapa B, Subedi P (2019) Sinkhole susceptibility mapping in Marion County, Florida: evaluation and comparison between analytical hierarchy process and logistic regression-based approaches. Sci Rep 9(1):1–18. https://doi.org/10.1038/s41598-019-43705-6

    Article  Google Scholar 

  • Sunwoo C, Song WK, Ryu DW (2010) A case study of subsidence over an abandoned underground limestone mine. Geosystem Engineering 13(4):147–152. https://doi.org/10.1080/12269328.2010.10541322

    Article  Google Scholar 

  • Swets JA (1988) Measuring the accuracy of diagnostic systems. Science 240(4857):1285–1293

    Article  Google Scholar 

  • Taheri K, Gutiérrez F, Mohseni H, Raeisi E, Taheri M (2015) Sinkhole susceptibility mapping using the analytical hierarchy process (AHP) and magnitude–frequency relationships: a case study in Hamadan province. Iran Geomorphol 234:64–79. https://doi.org/10.1016/j.geomorph.2015.01.005

    Article  Google Scholar 

  • Tharp TM (1999) Mechanics of upward propagation of cover-collapse sinkholes. Eng Geol 52(1–2):23–33

    Article  Google Scholar 

  • Tharp TM (2002) Poroelastic analysis of cover-collapse sinkhole formation by piezometric surface drawdown. Environ Geol 42(5):447–456

    Article  Google Scholar 

  • Turco E, Schettino A, Pierantoni PP, Santarelli G (2006) The Pleistocene extension of the Campania Plain in the framework of the southern Tyrrhenian tectonic evolution: morphotectonic analysis, kinematic model and implications for volcanism. Dev Volcanol Elsevier 9:27–51. https://doi.org/10.1016/S1871-644X(06)80016-1

    Article  Google Scholar 

  • Vitale S, Ciarcia S (2018) Tectono-stratigraphic setting of the Campania region (southern Italy). J Maps 14(2):9–21. https://doi.org/10.1080/17445647.2018.142

    Article  Google Scholar 

  • Waltham T, Bell F, Culshaw M (2005) Sinkholes and subsidence. Springer, Berlin. https://doi.org/10.1007/b138363

    Book  Google Scholar 

  • Wilson WL, Beck BF (1992) Hydrogeologic factors affecting new sinkhole development in the Orlando area. Florida Groundwater 30(6):918–930. https://doi.org/10.1111/j.1745-6584.1992.tb01575.x

    Article  Google Scholar 

  • Yilmaz I (2007) GIS based susceptibility mapping of karst depression in gypsum: a case study from Sivas basin (Turkey). Eng Geol 90(1–2):89–103

    Article  Google Scholar 

  • Yokota T, Fukatani W, Miyamoto T (2012) The present situation of the road cave in sinkholes caused by sewer systems (FY2006*FY2009). National institute for land and infrastructure management, Ministry of Land, Infrastructure, Transport and Tourism, Japan, Report No. 668 (In Japanese)

Download references

Acknowledgements

The authors thank “Consorzio interUniversitario per la prevenzione dei Grandi Rischi (CUGRI)” for providing technological support, “Sintema Engineering srl” for Cimitero delle Fontanelle photo, the two anonymous reviewers for providing constructive reviews of the manuscript and the Editor for its editorial suggestions.

Funding

Funding was provided by the Italian Ministry for Education, University and Research (MIUR-Italy), through 2017 PRIN Project “URGENT—Urban Geology and Geohazards: Engineering geology for safer, resilieNt and smart ciTies” (Project code 2017HPJLPW_005; CUP E68D17000200001; Principal Investigator: Domenico Calcaterra).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luigi Guerriero.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare that are relevant to the content of this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tufano, R., Guerriero, L., Annibali Corona, M. et al. Anthropogenic sinkholes of the city of Naples, Italy: an update. Nat Hazards 112, 2577–2608 (2022). https://doi.org/10.1007/s11069-022-05279-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11069-022-05279-x

Keywords

Navigation