Skip to main content

Advertisement

Log in

The influence of land use/land cover variability and rainfall intensity in triggering landslides: a back-analysis study via physically based models

  • Review Article
  • Published:
Natural Hazards Aims and scope Submit manuscript

Abstract

The objective of this study was to use physically based models to carry out a back-analysis of the set of factors that may have influenced slope instability and the consequent development of 65 landslides in the Bengalar Stream basin, located in the Northern Region of São José dos Campos, São Paulo State, Brazil, associated with rainfall between March 7 and 8, 2016. Unlike other models, the FS FIORI model used in this study allowed extra variables to be added to the model that can influence hillslope stability and is associated with land use and land cover (LULC) variability. Analysis of intense short-term and accumulated long-term rainfall influence on slope instability was possible via a TRIGRS model. A comparative analysis was also carried out between a static model (FS FIORI) and a transient model (TRIGRS) which considered the factor of safety and pore pressure to be a function of precipitation and infiltration rates. Despite the differences in their hydrological components, both models were shown to present relatively similar and demonstrated stability rates coherence, according to the characteristics of each model. The FS FIORI model only classified 1.3% of the entire basin as unstable (FS ≤ 1), whereas the TRIGRS model classified 4.5% and 2.9% of the entire basin as unstable in scenarios 1 and 2, respectively. The validity and the accuracy of each model were tested via a receiver operating characteristic (ROC) curve and an area under the curve (AUC). AUC values were: 0.6552 for the FS FIORI model, and 0.7238 and 0.7186 for scenarios 1 and 2 of the TRIGRS model, respectively. The models performed well, with values considered to be acceptable. These results demonstrate an advancement in slope stability modeling studies, including conditioning factors associated with LULC for slope stability calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Aditian A, Kubota T, Shinohara Y (2018) Comparison of GIS-based landslide susceptibility models using frequency ratio, logistic regression, and artificial neural network in a tertiary region of Ambon, Indonesia. Geomorphology. https://doi.org/10.1016/j.geomorph.2018.06.006

    Article  Google Scholar 

  • Aleotti P, Chowdhury R (1999) Landslide hazard assessment: summary review and new perspectives. Bull Eng Geol Env. https://doi.org/10.1007/s100640050066

    Article  Google Scholar 

  • Alvares CA, Stape JL, Sentelhas PC, Gonçalves JLM, Sparovek G (2013) Köppen’s climate classification map for Brazil. Meteorol Z. https://doi.org/10.1127/0941-2948/2013/0507

    Article  Google Scholar 

  • ABNT-Associação Brasileira de Normas Técnicas (1980) NBR 6120: cargas para o cálculo de estruturas de edificações. Rio de Janeiro

  • Au SWC (1998) Rain-induced slope instability in Hong Kong. Eng Geol. https://doi.org/10.1016/S0013-7952(98)00038-6

    Article  Google Scholar 

  • Baum RL, Savage WZ, Godt JW (2002) TRIGRS: a fortran program for transient rainfall infiltration and grid-based regional slope-stability analysis. USGS numbered series (Open-File Report). https://doi.org/10.3133/ofr02424

  • Baum RL, Savage WZ, Godt JW (2008) TRIGRS: a fortran program for transient rainfall infiltration and grid-based regional slope-stability analysis, Version 2.0. USGS numbered series (Open-File Report). https://doi.org/10.3133/ofr20081159

  • Brito MM, Weber EJ, Silva Filho LCP (2017) Multi-criteria analysis applied to landslide susceptibility mapping. Revis Bras de Geomorfol https://doi.org/10.20502/rbg.v18i4.1117

  • Brunsden D, Prior DB (1984) Slope instability. Wiley, Chichester

    Google Scholar 

  • Camargo FF, Florenzano TG, Almeida CM, Oliveira CG (2011) Mapeamento geomorfológico com imagens estereoscópicas digitais do sensor ASTER/Terra. Geociênc UNESP 30:95–104

    Google Scholar 

  • Camarinha PIM (2016) Vulnerabilidade aos desastres naturais decorrentes de deslizamentos de terra em cenários de mudanças climáticas na porção paulista da Serra do Mar. Thesis (PhD in Earth System Science). Instituto Nacional de Pesquisas Espaciais (INPE)

  • Carrara A, Guzzetti F, Cardinali M, Reichenbach P (1999) Use of GIS technology in the prediction and monitoring of landslide hazard. Nat Hazards. https://doi.org/10.1023/A:1008097111310

    Article  Google Scholar 

  • Chae BG, Park HJ, Catani F, Simoni A, Berti M (2017) Landslide prediction, monitoring and early warning: a concise review of state-of-the-art. Geosci J. https://doi.org/10.1007/s12303-017-0034-4

    Article  Google Scholar 

  • Chiaradia EA, Vergani C, Bischetti GB (2016) Evaluation of the effects of three European forest types on slope stability by field and probabilistic analyses and their implications for forest management. Ecol. Manag. For. https://doi.org/10.1016/j.foreco.2016.03.050

    Book  Google Scholar 

  • Cislaghi A, Rigon E, Lenzi MA, Bischetti GB (2018) A probabilistic multidimensional approach to quantify large wood recruitment from hillslopes in mountainous-forested catchments. Geomorphology. https://doi.org/10.1016/j.geomorph.2018.01.009

    Article  Google Scholar 

  • CHUVA deixa bairros isolados na zona norte e interdita SP-50 em São José (2016) G1, São José dos Campos, 8 March 2016. IOP Publishing PhysicsWeb. https://g1.globo.com/sp/vale-do-paraiba-regiao/noticia/2016/03/chuva-deixa-bairros-isolados-na-zona-norte-e-interdita-sp-50-em-sao-jose.html. Accessed 24 January 2019

  • Dietrich WE, Montgomery DR (1998) SHALSTAB: a digital terrain model for mapping shallow landslide potential. NCASI (National Council of the Paper Industry for Air and Stream Improvement), Technical Report, p 29

  • Dietrich WE, Bellugi D, Asua RR (2001) Validation of the shallow landslide model, SHALSTAB, for forest management. In: Wigmosta MS, Burges SJ (eds) Land use and watersheds: human infl uence on hydrology and geomorphology in urban and forest areas. American Geophysical Union, Washington, pp 195–227

    Google Scholar 

  • Dietrich WE, McKean J, Bellugi D, Perron T, (2007) The prediction of shallow landslide location and size using a multidimensional landslide analysis in a digital terrain model. Proceedings of the 4th international conference on debris flow hazards mitigation: mechanics, prediction, and assessment (DFHM-4) chengdu, China pp. 10–13

  • ESRI-Environmental Systems Research Institute (2011) ArcGis, spatial analyst, 3D analyst. Version 10:1

    Google Scholar 

  • Fawcett T (2006) An introduction to ROC analysis. Sci Direct. https://doi.org/10.1016/j.patrec.2005.10.010

    Article  Google Scholar 

  • Fell R, Corominas J, Bonnard C, Cascini L, Leroi E, Savage WZ (2008) Guidelines for landslide susceptibility, hazard and risk zoning for land use planning. Eng Geol. https://doi.org/10.1016/j.enggeo.2008.03.022

    Article  Google Scholar 

  • Fernandes NF, Amaral CP (1996) Movimentos de massa: uma abordagem geológico-geomorfológica. In: Cunha SB (ed) Guerra AJT. Geomorfologia e meio ambiente Bertrand Brasil, Rio de Janeiro

    Google Scholar 

  • Fernandes NF, Guimarães RF, Gomes FAT, Vieira BC, Montgomety DR, Greenberg H (2001) Condicionantes geomorfológicos dos deslizamentos nas encostas: avaliação de metodologias e aplicação de modelo de previsão de áreas susceptíveis. Revis Bras de Geomorfol. https://doi.org/10.20502/rbg.v2i1.8

  • Fernandes NF (2016) Modelagem em geografia física: teoria, potencialidades e desafios. Espaç Aberto. https://doi.org/10.36403/espacoaberto.2016.5243

  • Fiori AP (2015) Fundamentos de mecânica dos solos e das rochas: aplicações na estabilidade de taludes. Oficina de Textos, São Paulo

    Google Scholar 

  • Frattini P, Crosta G, Carrara A (2010) Techniques for evaluating the performance of landslide susceptibility models. Eng Geol. https://doi.org/10.1016/j.enggeo.2009.12.004

    Article  Google Scholar 

  • Gao J (1993) Identification of topographic settings conductive to landsliding from DEM in Nelson County, Virginia, U.S.A. Earth Surf Proc Land 18:579–591

    Article  Google Scholar 

  • Guidicini G, Iwasa OY (1976) Ensaio de correlação entre pluviosidade e escorregamentos em meio tropical úmido. IPT nº 1080, São Paulo

  • Guidicini G, Nieble CM (1983) Estabilidade de Taludes Naturais e de Escavação. Edgard Blücher, São Paulo

    Google Scholar 

  • Guimarães RF, Montgomery DR, Greenberg HM, Fernandes NF, Gomes RAT, Carvalho Júnior OA (2003) Parametrization of soil properties for a model of topographic controls on shallow landsliding: application to Rio de Janeiro. Eng Geol. https://doi.org/10.1016/S0013-7952(02)00263-6

    Article  Google Scholar 

  • Hasekioğullari GD, Ercanoglu M (2012) A new approach to use AHP in landslide susceptibility mapping: a case study at Yenice (Karabuk. Nat Hazards, NW Turkey). https://doi.org/10.1007/s11069-012-0218-1

    Book  Google Scholar 

  • IPT/CPRM (2015) Carta de suscetibilidade a movimentos gravitacionais de massa e inundações: município de São José dos Campos-SP. IOP Publishing PhysicsWeb https://rigeo.cprm.gov.br/jspui/handle/doc/15214. Accessed 23 June 2019

  • Iverson RM (2000) Landslide triggering by rain infiltration. Water Resour Res. https://doi.org/10.1029/2000WR900090

    Article  Google Scholar 

  • Kim D, Ima S, Lee C, Wooc C (2013) Modeling the contribution of trees to shallow landslide development in a steep, forested watershed. Ecol Eng. https://doi.org/10.1016/j.ecoleng.2013.05.003

    Article  Google Scholar 

  • Köning T, Kux HJH, Mendes RM (2019) Shalstab mathematical model and WorldView-2 satellite images to identification of landslide-susceptible areas. Nat Hazard. https://doi.org/10.1007/s11069-019-03691-4

    Article  Google Scholar 

  • Listo FLR, Vieira BC (2012) Mapping of risk and susceptibility of shallow-landslide in the city of São Paulo Brazil. Geomorphology. https://doi.org/10.1016/j.geomorph.2012.01.010

    Article  Google Scholar 

  • Listo FLR 2015 Propriedades geotécnicas dos solos e modelagem matemática de previsão a escorregamentos translacionais rasos. Thesis (PhD in Geography) Universidade de São Paulo (USP)

  • Listo FLR, Gomes MCV, Vieira BC (2018) Avaliação da variação do fator de segurança com o modelo TRIGRS. Revis Bras de Geomorfol. https://doi.org/10.20502/rbg.v19i1.1256

  • Maciel Filho CL (1994) Introdução à geologia de engenharia. UFSM/CPRM, Santa Maria/RS-Brasilia/DF

    Google Scholar 

  • Maffra C, Sousa R, Sutili F, Pinheiro R (2019) The effect of roots on the shear strength of texturally distinct soils. Floresta Ambient. https://doi.org/10.1590/2179-8087.101817

    Article  Google Scholar 

  • Mendes RM, Valério Filho M (2015) Real-time monitoring of climactic and geotechnical variables during landslides on the slopes of serra do mar and serra da mantiqueira (São Paulo State, Brazil). Engineering. https://doi.org/10.4236/eng.2015.73012

    Article  Google Scholar 

  • Mendes RM, Valério Filho M, Bertoldo MA, Silva MF (2015) Estudo de limiares críticos de chuva deflagrados de deslizamentos no município de São José dos Campos/SP (Brasil). Territorium. https://doi.org/10.14195/1647-7723_22_8

  • Mendes RM, Andrade MRM, Graminha CA, Prieto CC, Ávila FF, Camarinha PIM (2017a) Stability analysis on urban slopes: case study of an anthropogenic-induced landslide in São José dos Campos. Brazil Geotech Geol Eng. https://doi.org/10.1007/s10706-017-0303-z

    Article  Google Scholar 

  • Mendes RM, Andrade MRM, Tomasella J, Moraes MAE, Scofield GB (2017b) Understanding shallow landslides in Campos do Jordão Municipality–Brazil: disentangle the anthropic effects from natural causes in the disaster of 2000. Hazards Earth Syst, Nat. https://doi.org/10.5194/nhess-18-15-2018

    Book  Google Scholar 

  • Michel GP (2013) Modelagem de estabilidade de encostas com consideração do efeito da vegetação. Dissertation (Master in Environmental Engineering). Universidade Federal de Santa Catarina

  • Montgomery DR, Dietrich W (1994) A physically based model for the topographic control on shallow landsliding. Water Resour Res. https://doi.org/10.1029/93WR02979

    Article  Google Scholar 

  • Montgomery DR, Sullivan K, Greenberg H (1998) Regional test of a model for shallow landsliding. Hydrol Process. https://doi.org/10.1002/(SICI)1099-1085(199805)12:6%3C943:AID-HYP664%3E3.0.CO;2-Z

    Article  Google Scholar 

  • Pack RT, Tarboton DG, Goodwin CN (1998) The SINMAP approach to terrain stability mapping. In: Proceedings of the 8th Congress of the international association of engineering geology. British Columbia, Vancouver

  • Peloggia A (1998) O homem e o ambiente geológico: geologia, sociedade e ocupação urbana no município de São Paulo. Xamã, São Paulo

    Google Scholar 

  • Persichillo MG, Bordoni M, Meisina C (2017) The role of land use changes in the distribution of shallow landslides. Total Environ, Sci. https://doi.org/10.1016/j.scitotenv.2016.09.125

    Book  Google Scholar 

  • Quinta Ferreira M, Lemos LJL, Pereira LFM (2005) Influência da precipitação na ocorrência de deslizamentos em Coimbra, nos últimos 139 anos. Revis Port de Geotec 104:17–30

    Google Scholar 

  • Ross JS, Moroz IC (2011) Mapa Geomorfológico do Estado de São Paulo. Revis do Dep de Geogr 10:41–58

    Google Scholar 

  • Schmaltz EM, Steger S, Glade T (2017) The influence of forest cover on landslide occurrence explored with spatio-temporal information. Geomorphology. https://doi.org/10.1016/j.geomorph.2017.04.024

    Article  Google Scholar 

  • Schmidt KM, Roering JJ, Stock JD, Dietrich WE, Montgomery DR, Schaub T (2001) The variability of root cohesion as an influence on shallow landslide susceptibility in the Oregon Coast Range. Can Geotech J. https://doi.org/10.1139/t01-031

    Article  Google Scholar 

  • Seluchi ME, Chou SC (2009) Synoptic patterns associated with landslides events in the Serra do Mar. Brazil Theor Appl Climatol. https://doi.org/10.1007/s00704-008-0101-x

    Article  Google Scholar 

  • Sidle RC, Pearce AJ, O’Loughlin CL (1985) Hillslope stability and land use. American Geophysical Union, London

    Book  Google Scholar 

  • Sidle RC (1992) A theoretical model of the effects of timber harvesting on slope stability. Water Resour Res. https://doi.org/10.1029/92WR00804

    Article  Google Scholar 

  • Silveira CT, Fiori AP, Ferreira AM, Felipe RS, Kepel Filho JL, Folador RM (2012) Análise do fator de segurança da estabilidade das vertentes na bacia do Rio Jacareí, Serra do Mar Paranaense. Revis Bras de Geomorfol https://doi.org/10.20502/rbg.v13i3.224

  • Teixeira M, Bateira C, Marques F, Vieira B (2015) Physically based shallow translational landslide susceptibility analysis in Tibo catchment. Landslides, NW of Portugal. https://doi.org/10.1007/s10346-014-0494-9

    Book  Google Scholar 

  • Valério Filho M, Mendes RM, Faria DGM, Fantin M, Bertoldo MA, Melo FN, Silva MF, Cunha RP (2014) Mapping of the risk areas associated with landslide of slopes in municipality of the Sao José dos Campos-SP. Final technical report, Agreement UNIVAP/PMSJC

  • Vieira BC (2007) Previsão de Escorregamentos translacionais rasos na serra do mar (SP) a partir de modelos matemáticos em bases físicas. Doctoral thesis in geography. Universidade Federal do Rio de Janeiro

  • Vieira BC, Fernandes NF, Augusto Filho O (2010) Shallow landslide prediction in the Serra do Mar. Nat Hazards Earth Syst Sci, São Paulo, Brazil. https://doi.org/10.5194/nhess-10-1829-2010

    Book  Google Scholar 

  • Vieira BC, Martins TD, Listo FLR (2017) Previsão de escorregamentos rasos utilizando modelos matemáticos em bases físicas. Gunther WR, Ciccotti L, Rodrigues AC Desastres: múltiplas abordagens e desafios. Elsevier, Rio de Janeiro, pp 231–242

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frederico F. Ávila.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ávila, F.F., Alvalá, R.C., Mendes, R.M. et al. The influence of land use/land cover variability and rainfall intensity in triggering landslides: a back-analysis study via physically based models. Nat Hazards 105, 1139–1161 (2021). https://doi.org/10.1007/s11069-020-04324-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11069-020-04324-x

Keywords

Navigation