Skip to main content

Advertisement

Log in

Forecast model of allergenic hazard using trends of Poaceae airborne pollen over an urban area in SW Iberian Peninsula (Europe)

  • Original Paper
  • Published:
Natural Hazards Aims and scope Submit manuscript

Abstract

Cities are becoming bigger, being necessary the knowledge of associated natural hazards from organic and inorganic aerosols. This hazard could be included in the context of urban air pollution and climate change as environmental risk factors for allergy. Overall, grass pollens are the most important cause of pollinosis in Europe due to its high allergenicity and extensive distribution. The main objective of this work was to model daily average Poaceae airborne pollen concentrations from an urban area placed in a city in the SW of the Iberian Peninsula, taking into account the temporal distribution of five different meteorological variables from 23 years of continuous recording. This was achieved using a combination with the Shuffle Complex Evolution Metropolis Algorithm using as an optimisation function the root mean square error. Aerobiological sampling was conducted from 1993 to 2015 in Badajoz (SW Spain) using a 7-day Hirst-type volumetric sampler. The Poaceae Main Pollen Season lasted, on average, 89 days, ranging from 41 to 144 days, from April 17 to July 14. The model proposed to forecast airborne pollen concentrations is described by one equation composed of two terms. The first term represents the resilience of the pollen concentration trend in the air according to the average concentration of the previous 10 days, and the second term is obtained from considering the actual pollen concentration value, which is calculated based on the most representative meteorological variables multiplied by a fitting coefficient. The fit of the model was examined for a forecast horizon of 1, 7, 15 and 30 days. The R 2 values obtained were 0.70, 0.69, 0.62 and 0.57, respectively, which show a trend in decreasing order. These results confirm the suitability of the proposed model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aboulaich N, Achmakh L, Bouziane H, Trigo MM, Recio M, Kadiri M, Cabezudo B, Riadi H, Kazzaz M (2013) Effect of meteorological parameters on Poaceae pollen in the atmosphere of Tetouan (NW Morocco). Int J Biometeorol 57(2):197–205

    Article  Google Scholar 

  • AEMET (2016) Climate statistics. Badajoz Airport (1981–2010). Agencia Estatal de Meteorología, Gobierno de España

    Google Scholar 

  • Aguilera F, Orlandi F, Ruiz-Valenzuela L, Msallem M, Fornaciari M (2015) Analysis and interpretation of long temporal trends in cumulative temperatures and olive reproductive features using a seasonal trend decomposition procedure. Agric For Meteorol 203:208–216

    Article  Google Scholar 

  • Ambade B (2016) Characterization of PM10 over urban and rural sites of Rajnandgaon, central India. Nat Hazards 80(1):589–604

    Article  Google Scholar 

  • Annesi-Maesano I, Rouve S, Desqueyroux H, Jankovski R, Klossek JM, Thibaudon M, Demoly P, Didier A (2012) Grass pollen counts, air pollution levels and allergic rhinitis severity. Int Arch Allergy Immunol 158(4):397–404

    Article  Google Scholar 

  • Barbosa HA, Lakshmi Kumar TV, Silva LRM (2015) Recent trends in vegetation dynamics in the South America and their relationship to rainfall. Nat Hazards 77(2):883–899

    Article  Google Scholar 

  • Beggs PJ (2014) Impacts of climate change on allergens and allergic diseases: knowledge and highlights from two decades of research. In: Butler CD (ed) Climate change and global health. pp 105–113. doi:10.1079/9781780642659.0105

    Google Scholar 

  • Bogawski P, Grewling Ł, Nowak M, Smith M, Jackowiak B (2014) Trends in atmospheric concentrations of weed pollen in the context of recent climate warming in Poznań (Western Poland). Int J Biometeorol 58(8):1759–1768

    Article  Google Scholar 

  • Breuste J, Artmann M, Li J, Xie M (2015) Special issue on green infrastructure for urban sustainability. J Urban Plan Develop 141(3)

  • Brighetti MA, Costa C, Menesatti P, Antonucci F, Tripodi S, Travaglini A (2014) Multivariate statistical forecasting modeling to predict Poaceae pollen critical concentrations by meteoclimatic data. Aerobiologia 30(1):25–33

    Article  Google Scholar 

  • Cassagne E, Caillaud D, Besancenot JP, Thibaudon M (2008) Forecasting the onset of an allergic risk to Poaceae in Nancy and Strasbourg (France) with different methods. Eur Ann Allergy Clin Immunol 40(1):14–21

    Google Scholar 

  • Chuine I, Belmonte J (2004) Improving prophylaxis for pollen allergies: predicting the time course of the pollen load of the atmosphere of major allergenic plants in France and Spain. Grana 43(2):65–80

    Article  Google Scholar 

  • Clary J, Savé R, Biel C, De Herralde F (2004) Water relations in competitive interactions of Mediterranean grasses and shrubs. Ann Appl Biol 144(2):149–155

    Article  Google Scholar 

  • Comtois P (1998) Ragweed (Ambrosia sp.): the Phoenix of allergophytes. In: Spieksma FThM (ed) Ragweed in Europe. Satellite symposium proceedings of 6th international congress on aerobiology, Perugia, Italy. Alk-Abelló A/S, Horsholm, pp 3–5

  • Csépe Z, Makra L, Voukantsis D, Matyasovszky I, Tusnády G, Karatzas K, Thibaudon M (2014) Predicting daily ragweed pollen concentrations using computational intelligence techniques over two heavily polluted areas in Europe. Sci Total Environ 476–477:542–552

    Article  Google Scholar 

  • Dahl A, Galán C, Hajkova L, Pauling A, Sikoparija B, Smith M, Vokou D (2013) The onset, course and intensity of the pollen season. In: Sofiev M, Bergmann K-C (eds) Allergenic pollen. A review of the production, release, distribution and health impacts. Springer, Dordrecht, pp 29–70

    Google Scholar 

  • D’Amato G, Cecchi L, Bonini S, Nunes C, Annesi-Maesano I, Behrendt H, Liccardi G, Popov T, Van Cauwenberge P (2007) Allergenic pollen and pollen allergy in Europe. Allergy Eur J Allergy Clin Immunol 62(9):976–990

    Article  Google Scholar 

  • D’Amato G, Cecchi L, D’Amato M, Liccardi G (2010) Urban air pollution and climate change as environmental risk factors of respiratory allergy: an update. J Investig Allergol Clin Immunol 20(2):95–102

    Google Scholar 

  • D’Amato G, Holgate ST, Pawankar R, Ledford DK, Cecchi L, Al-Ahmad M, Al-Enezi F, Al-Muhsen S, Ansotegui I, Baena-Cagnani CE, Baker DJ, Bayram H, Bergmann KC, Boulet LP, Buters JTM, D’Amato M, Dorsano S, Douwes J, Finlay SE, Garrasi D, Gómez M, Haahtela T, Halwani R, Hassani Y, Mahboub B, Marks G, Michelozzi P, Montagni M, Nunes C, Oh JJW, Popov TA, Portnoy J, Ridolo E, Rosário N, Rottem M, Sánchez-Borges M, Sibanda E, Sienra-Monge JJ, Vitale C, Annesi-Maesano I (2015) Meteorological conditions, climate change, new emerging factors, and asthma and related allergic disorders. A statement of the World Allergy Organization. World Allergy Organ J (1):8–25. doi:10.1186/s40413-015-0073-0

  • Damialis A, Halley JM, Gioulekas D, Vokou D (2007) Long-term trends in atmospheric pollen levels in the city of Thessaloniki, Greece. Atmos Environ 41(33):7011–7021

    Article  Google Scholar 

  • de Weger LA, Beerthuizen T, Hiemstra PS, Sont JK (2014) Development and validation of a 5-day-ahead hay fever forecast for patients with grass-pollen-induced allergic rhinitis. Int J Biometeorol 58(6):1047–1055

    Google Scholar 

  • Domínguez E, Infante F, Galán C, Guerra F, de la Torre FV (1993) Variations in the concentrations of airborne Olea pollen and associated pollinosis in Córdoba (Spain): a study of the 10-years period 1982–1991. J Invest Allergol Clin Immunol 3(3):121–129

    Google Scholar 

  • Efstratiadis A, Koutsoyiannis D (2010) One decade of multi-objective calibration approaches in hydrological modelling: a review. Hydrol Sci J 55(1):58–78

    Article  Google Scholar 

  • Emberlin J, Savage M, Jones S (1993) Annual variations in grass pollen seasons in London 1961–1990: trends and forecast models. Clin Exp Allergy 23(11):911–918

    Article  Google Scholar 

  • Emberlin J, Jones S, Bailey J, Caulton E, Corden J, Dubbels S, Evans J, McDonagh N, Millington W, Mullins J, Russel R, Spencer T (1994) Variation in the start of the grass pollen season at selected sites in the United Kingdom 1987–1992. Grana 33(2):94–99

    Article  Google Scholar 

  • Erbas B, Chang JH, Newbigin E, Dhamarge S (2007) Modelling atmospheric concentrations of grass pollen using meteorological variables in Melbourne, Australia. Int J Environ Health Res 17(5):361–368

    Article  Google Scholar 

  • Erbas B, Akram M, Dharmage SC, Tham R, Dennekamp M, Newbigin E, Taylor P, Tang MLK, Abramson MJ (2012) The role of seasonal grass pollen on childhood asthma emergency department presentations. Clin Exp Allergy 42(5):799–805

    Article  Google Scholar 

  • Fernández-Rodríguez S, Adams-Groom B, Silva-Palacios I, Caeiro E, Brandao R, Ferro R, Gonzalo-Garijo Á, Smith M, Tormo Molina R (2015a) Comparison of Poaceae pollen counts recorded at sites in Portugal, Spain and the UK. Aerobiologia 31(1):1–10

    Article  Google Scholar 

  • Fernández-Rodríguez S, Skjøth CA, Tormo-Molina R, Brandao R, Caeiro E, Silva-Palacios I, Gonzalo-Garijo Á, Smith M (2015b) Identification of potential sources of airborne Olea pollen in the Southwest Iberian Peninsula. Int J Biometeorol 58(3):337–348

    Article  Google Scholar 

  • Fernández-Rodríguez S, Sadyś M, Smith M, Tormo-Molina R, Skjøth CA, Maya-Manzano JM, Silva-Palacios I, Gonzalo-Garijo T (2015c) Potential sources of airborne Alternaria spp. spores in South-west Spain. Sci Total Environ 533:165–176

    Article  Google Scholar 

  • Fernández-Rodríguez S, Durán-Barroso P, Silva-Palacios I, Tormo-Molina R, Maya-Manzano JM, Gonzalo-Garijo Á (2016a) Quercus long-term pollen season trends in the southwest of the Iberian Peninsula. Process Saf Environ Prot. 101:152–159. doi:10.1016/j.psep.2015.11.008

    Article  Google Scholar 

  • Fernández-Rodríguez S, Durán-Barroso P, Silva-Palacios I, Tormo-Molina R, Maya-Manzano JM, Gonzalo-Garijo Á (2016b) Regional forecast model for the Olea pollen season in Extremadura (SW Spain). Int J Biometeorol. 1–9. doi:10.1007/s00484-016-1141-z

  • Fornaciari M, Galan C, Mediavilla A, Dominquez E, Romano B (2000) Aeropalynological and phenological study in two different Mediterranean olive areas: Cordoba (Spain) and Perugia (Italy). Plant Biosyst 134(2):199–204

    Article  Google Scholar 

  • Galán C, Cuevas J, Infante F, Domínguez E (1989) Seasonal and diurnal variation of pollen from Gramineae in the atmosphere of Córdoba Spain. Allergol Immunopathol 17(5):245–249

    Google Scholar 

  • Galán C, Emberlin J, Domínguez E, Bryant RH, Villamandos F (1995) A comparative analysis of daily variations in the gramineae pollen counts at Córdoba, Spain and London, UK. Grana 34(3):189–198

    Article  Google Scholar 

  • Galán C, Cariñanos P, Alcázar P, Dominguez-Vilches E (2007) Spanish Aerobiology Network (REA) management and quality manual. Servicio de Publicaciones Universidad de Córdoba. ISBN 978-84-690-6353-8

  • García de León D, García-Mozo H, Galán C, Alcázar P, Lima M, González-Andújar JL (2015) Disentangling the effects of feedback structure and climate on Poaceae annual airborne pollen fluctuations and the possible consequences of climate change. Sci Total Environ 530–531:103–109

    Article  Google Scholar 

  • García-Mozo H, Galán C, Belmonte J, Bermejo D, Candau P, Díaz de la Guardia C, Elvira B, Gutiérrez M, Jato V, Silva I, Trigo MM, Valencia R, Chuine I (2009) Predicting the start and peak dates of the Poaceae pollen season in Spain using process-based models. Agric For Meteorol 149(2):256–262

    Article  Google Scholar 

  • García-Mozo H, Galán C, Alcázar P, De La Guardia CD, Nieto-Lugilde D, Recio M, Hidalgo P, Gónzalez-Minero F, Ruiz L, Domínguez-Vilches E (2010) Trends in grass pollen season in southern Spain. Aerobiologia 26(2):157–169

    Article  Google Scholar 

  • García-Mozo H, Oteros JA, Galán C (2016) Impact of land cover changes and climate on the main airborne pollen types in Southern Spain. Sci Total Environ 548–549:221–228

    Article  Google Scholar 

  • Gong WH, Zhang YL, Feng F, Liu FC, He YF (2015) Complex motions of grains in dusty plasma with nonuniform magnetic field. Wuli Xuebao/Acta Phys Sin 64(19):0195202. doi:10.7498/aps.64.195202

    Google Scholar 

  • Hao Y, Kang J, Krijnders JD (2015) Integrated effects of urban morphology on birdsong loudness and visibility of green areas. Landsc Urban Plan 137:149–162

    Article  Google Scholar 

  • Hirst JM (1952) An automatic volumetric spore trap. Ann Appl Biol 39(2):257–265

    Article  Google Scholar 

  • Ibáñez I, Primack RB, Miller-Rushing AJ, Ellwood E, Higuchi H, Lee SD, Kobori H, Silander JA (2010) Forecasting phenology under global warming. Philos Trans R Soc B Biol Sci 365(1555):3247–3260

    Article  Google Scholar 

  • IPPC (2013) Summary for policymarkers. In: Stovker TF, D Qin, Plattner GK, Tigor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V (eds) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel of climate change. Cambridge University Press, United Kingdom and New York, NY, USA

  • Jäger S (1998) Global aspects of ragweed in Europe. In: Spieksma FThM (ed) Ragweed in Europe. Satellite symposium proceedings of 6th international congress of aerobiology, Perugia, Italy 1998. Alk-Abelló A/S, Horsholm, pp 6–10

  • Járai-Komlódi M (1998) Ragweed in Hungary. In: Spieksma FThM (ed.) Ragweed in Europe. Satellite symposium proceedings of 6th international congress of aerobiology, Perugia, Italy 1998. Alk-Abelló A/S, Horsholm, pp 33–38

  • Jato V, Rodríguez-Rajo FJ, Seijo MC, Aira MJ (2009) Poaceae pollen in Galicia (N.W. Spain): characterisation and recent trends in atmospheric pollen season. Int J Biometeorol 53(4):333–344

    Article  Google Scholar 

  • Kasprzyk I, Walanus A (2010) Description of the main Poaceae pollen season using bi-Gaussian curves, and forecasting methods for the start and peak dates for this type of season in Rzeszów and Ostrowiec Św. (SE Poland). J Environ Monit 12(4):906–916

    Article  Google Scholar 

  • Kizilpinar I, Civelek E, Tuncer A, Dogan C, Karabulut E, Sahiner UM, Yavuz ST, Sackesen C (2011) Pollen counts and their relationship to meteorological factors in Ankara, Turkey during 2005–2008. Int J Biometeorol 55(4):623–631

    Article  Google Scholar 

  • Laaidi M (2001) Forecasting the start of the pollen season of Poaceæ: evaluation of some methods based on meteorological factors. Int J Biometeorol 45(1):1–7

    Article  Google Scholar 

  • Makovcová S, Zlinká J, Mikolás V, Salát D, Krio V (1998) Ragweed in Slovak Republic. In: Spieksma FThM (ed) Ragweed in Europe. Satellite symposium proceedings of 6th international congress of aerobiology, Perugia, Italy, 1998. AlkAbelló A/S, Horsholm, pp 27–28

  • Menzel A, Sparks TH, Estrella N, Koch E, Aasa A, Ahas R, Alm-Kübler K, Bissolli P, Braslavská OG, Briede A, Chmielewski FM, Crepinsek Z, Curnel Y, Dahl Å, Defila C, Donnelly A, Filella Y, Jatczak K, Måge F, Mestre A, Nordli Ø, PeÑUelas J, Pirinen P, Remišová V, Scheifinger H, Striz M, Susnik A, Van Vliet AJH, Wielgolaski F-E, Zach S, Zust ANA (2006) European phenological response to climate change matches the warming pattern. Glob Change Biol 12(10):1969–1976

    Article  Google Scholar 

  • Miao L, Fraser R, Sun Z, Sneath D, He B, Cui X (2016) Climate impact on vegetation and animal husbandry on the Mongolian plateau: a comparative analysis. Nat Hazards 80(2):727–739

    Article  Google Scholar 

  • Moreno-Sarmiento M, Peñalba MC, Belmonte J, Rosas I, Ortega-Nieblas MM, Villa-Ibarra M, Lares-Villa F, Pizano-Nazara LJ (2016) Urban airborne pollen in a semiarid environment. Aerobiologia 32(2):363–370. doi:10.1007/s10453-015-9401-7

    Article  Google Scholar 

  • Muñoz-Rodríguez A, Silva-Palacios I, Tormo-Molina R (2010) Influence of meteorological parameters in hourly patterns of grass (Poaceae) pollen concentrations. Ann Agric Environ Med 17(1):87–100

    Google Scholar 

  • Myszkowska D (2014) Poaceae pollen in the air depending on the thermal conditions. Int J Biometeorol 58(5):975–986

    Article  Google Scholar 

  • Nilsson S, Persson S (1981) Tree pollen spectra in the stockholm region (sweden), 1973–1980. Grana 20(3):179–182

    Article  Google Scholar 

  • Peel RG, Kennedy R, Smith M, Hertel O (2014) Do urban canyons influence street level grass pollen concentrations? Int J Biometeorol 58(6):1317–1325

    Article  Google Scholar 

  • Peeters AG (1998) Ragweed in Switzerland. In: Spieksma FThM (ed) Ragweed in Europe. Satellite symposium proceedings of 6th international congress of aerobiology, Perugia, Italy 1998. Alk-Abelló A/S, Horsholm, pp 16–19

  • Piotrowska K (2012) Forecasting the Poaceae pollen season in eastern Poland. Grana 51(4):263–269

    Article  Google Scholar 

  • Puc M, Wolski T (2013) Forecasting of the selected features of Poaceae (R. Br.) Barnh., Artemisia L. and Ambrosia L. pollen season in Szczecin, North-Western Poland, using Gumbel’s distribution. Ann Agric Environ Med 20(1):36–47

    Google Scholar 

  • Ramos MC, Martínez-Casasnovas JA (2015) Climate change influence on runoff and soil losses in a rainfed basin with Mediterranean climate. Nat Hazards 78(2):1065–1089

    Article  Google Scholar 

  • Recio M, Docampo S, García-Sánchez J, Trigo MM, Melgar M, Cabezudo B (2010) Influence of temperature, rainfall and wind trends on grass pollination in Malaga (western Mediterranean coast). Agric For Meteorol 150(7–8):931–940

    Article  Google Scholar 

  • Rivera JP, Verrelst J, Gómez-Dans J, Muñoz-Marí J, Moreno J, Camps-Valls G (2015) An emulator toolbox to approximate radiative transfer models with statistical learning. Remote Sens 7(7):9347–9370

    Article  Google Scholar 

  • Rodríguez-Rajo FJ, Astray G, Ferreiro-Lage JA, Aira MJ, Jato-Rodriguez MV, Mejuto JC (2010) Evaluation of atmospheric Poaceae pollen concentration using a neural network applied to a coastal Atlantic climate region. Neural Netw 23(3):419–425

    Article  Google Scholar 

  • Rojo J, Rapp A, Lara B, Sabariego S, Fernández-González F, Pérez-Badia R (2016) Characterisation of the airborne pollen spectrum in Guadalajara (central Spain) and estimation of the potential allergy risk. Environ Monit Assess 188(3):1–13

    Article  Google Scholar 

  • Sabariego S, Cuesta P, Fernández-González F, Pérez-Badia R (2012) Models for forecasting airborne Cupressaceae pollen levels in central Spain. Int J Biometeorol 56(2):253–258

    Article  Google Scholar 

  • Sánchez-Mesa JA, Serrano P, Cariñanos P, Prieto-Baena JC, Moreno C, Guerra F, Galan C (2005) Pollen allerqy in Cordoba city: frequency of sensitization and relation with antihistamine sales. J Investig Allergol Clin Immunol 15(1):50–56

    Google Scholar 

  • Schmidheiny K, Suedekum J (2015) The pan-European population distribution across consistently defined functional urban areas. Econ Lett 133:10–13

    Article  Google Scholar 

  • Senyuva HZ, Gilbert J, Silici S, Charlton A, Dal C, Gürel N, Cimen D (2009) Profiling turkish honeys to determine authenticity using physical and chemical characteristics. J Agric Food Chem 57(9):3911–3919

    Article  Google Scholar 

  • Silva-Palacios I, Tormo-Molina R, Muñoz-Rodríguez A (2007) The importance of interactions between meteorological conditions when interpreting their effect on the dispersal of pollen from homogeneously distributed sources. Aerobiologia 23(1):17–26

    Article  Google Scholar 

  • Silva-Palacios I, Fernández-Rodríguez S, Durán-Barroso P, Tormo-Molina R, Maya-Manzano JM, Gonzalo-Garijo Á (2015) Temporal modelling and forecasting of the airborne pollen of Cupressaceae on the southwestern Iberian Peninsula. Int J Biometeorol 60(2):297–306

    Article  Google Scholar 

  • Smith M, Emberlin J (2005) Constructing a 7-day ahead forecast model for grass pollen at north London, United Kingdom. Clin Exp Allergy 35(10):1400–1406

    Article  Google Scholar 

  • Smith M, Emberlin J (2006) A 30-day-ahead forecast model for grass pollen in north London, United Kingdom. Int J Biometeorol 50(4):233–242

    Article  Google Scholar 

  • Smith M, Emberlin J, Stach A, Rantio-Lehtimäki A, Caulton E, Thibaudon M, Sindt C, Jäger S, Gehrig R, Frenguelli G, Jato V, Rajo FJR, Alcázar P, Galán C (2009) Influence of the North Atlantic Oscillation on grass pollen counts in Europe. Aerobiologia 25(4):321–332

    Article  Google Scholar 

  • Smith M, Jäger S, Berger U, Šikoparija B, Hallsdottir M, Sauliene I, Bergmann KC, Pashley CH, De Weger L, Majkowska-Wojciechowska B, Rybníček O, Thibaudon M, Gehrig R, Bonini M, Yankova R, Damialis A, Vokou D, Gutiérrez Bustillo AM, Hoffmann-Sommergruber K, Van Ree R (2014) Geographic and temporal variations in pollen exposure across Europe. Allergy Eur J Allergy Clin Immunol 69(7):913–923

    Article  Google Scholar 

  • Srivastava A, Singh M, Jain VK (2012) Identification and characterization of size-segregated bioaerosols at Jawaharlal Nehru University, New Delhi. Nat Hazards 60(2):485–499

    Article  Google Scholar 

  • Stach A, Garcia-Mozo H, Prieto-Baena JC, Czarnecka-Operacz M, Jenerowicz D, Silny W, Galan C (2007) Prevalence of Artemisia species pollinosis in western Poland: impact of climate change on aerobiological trends, 1995–2004. J Investig Allergol Clin Immunol 17(1):39–47

    Google Scholar 

  • Stach A, Smith M, Prieto Baena JC, Emberlin J (2008) Long-term and short-term forecast models for Poaceae (grass) pollen in Poznań, Poland, constructed using regression analysis. Environ Exp Bot 62(3):323–332

    Article  Google Scholar 

  • Tassan-Mazzocco F, Felluga A, Verardo P (2015) Prediction of wind-carried Gramineae and Urticaceae pollen occurrence in the Friuli Venezia Giulia region (Italy). Aerobiologia 31(4):559–574

    Article  Google Scholar 

  • Thibaudon M (1998) (1998): Ragweed in France. In Lyon, France, 1987–1997. In: Spieksma FThM (ed) Ragweed in Europe. Satellite symposium proceedings of 6th international congress of aerobiology, Perugia, Italy 1998. Alk-Abelló A/S, Horsholm, p 15

  • Tormo-Molina R, Gonzalo-Garijo MA, Silva-Palacios I, Muñoz-Rodríguez AF (2010) General trends in airborne pollen production and pollination periods at a mediterranean site (Badajoz, southwest spain). J Investig Allergol Clin Immunol 20(7):567–574

    Google Scholar 

  • Tormo-Molina R, Silva-Palacios I, Gonzalo-Garijo A, Moreno-Corchero A, Pérez-Calderón R, Fernández-Rodríguez S (2011) Phenological records as a complement to aerobiological data. Int J Biometeorol 55(1):51–65

    Article  Google Scholar 

  • Tormo-Molina R, Maya-Manzano JM, Silva-Palacios I, Fernández-Rodríguez S, Gonzalo-Garijo Á (2015) Flower production and phenology in Dactylis glomerata. Aerobiologia 31(4):469–479. doi:10.1007/s10453-015-9381-7

    Article  Google Scholar 

  • Ugolotti M, Pasquarella C, Vitali P, Smith M, Albertini R (2015) Characteristics and trends of selected pollen seasons recorded in Parma (Northern Italy) from 1994 to 2011. Aerobiologia 31(3):341–352. doi:10.1007/s10453-015-9368-4

    Article  Google Scholar 

  • Vesterberg O (2001) Airborne birch and grass pollen allergens in street-level shops. Indoor Air 11(4):241–245

    Article  Google Scholar 

  • Voukantsis D, Niska H, Karatzas K, Riga M, Damialis A, Vokou D (2010) Forecasting daily pollen concentrations using data-driven modeling methods in Thessaloniki, Greece. Atmos Environ 44(39):5101–5111

    Article  Google Scholar 

  • Vrugt JA, Gupta HV, Bouten W, Sorooshian S (2003) A shuffled complex evolution metropolis algorithm for optimization and uncertainty assessment of hydrologic model parameters. Water Resour Res 39(8):SWC11–SWC116

    Google Scholar 

  • Wang Q, Nakamura S, Lu S, Nakajima D, Suzuki M, Sekiguchi K, Miwa M (2013) Diurnal and nocturnal behaviour of airborne Cryptomeria japonica pollen grains and the allergenic species in urban atmosphere of Saitama, Japan. Asian J Atmos Environ 7(2):65–71

    Article  Google Scholar 

  • Wielgolaski FE (2001) Phenological modifications in plants by various edaphic factors. Int J Biometeorol 45(4):196–202

    Article  Google Scholar 

  • Zhang Y, Isukapalli S, Bielory L, Georgopoulos P (2013) Bayesian analysis of climate change effects on observed and projected airborne levels of birch pollen. Atmos Environ (Oxford, England: 1994) 68:64–73

    Article  Google Scholar 

  • Zhang Y, Bielory L, Cai T, Mi Z, Georgopoulos P (2015) Predicting onset and duration of airborne allergenic pollen season in the United States. Atmos Environ 103:297–306

    Article  Google Scholar 

Download references

Acknowledgments

This work was made possible by research projects PRI06A190 and PRI BS10008, and research groups aid GR15060 financed by the Regional Government, Junta de Extremadura (Spain), and the European Regional Development Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Santiago Fernández-Rodríguez.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fernández-Rodríguez, S., Durán-Barroso, P., Silva-Palacios, I. et al. Forecast model of allergenic hazard using trends of Poaceae airborne pollen over an urban area in SW Iberian Peninsula (Europe). Nat Hazards 84, 121–137 (2016). https://doi.org/10.1007/s11069-016-2411-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11069-016-2411-0

Keywords

Navigation