Skip to main content

Advertisement

Log in

Shallow-landslide susceptibility in the Costa Viola mountain ridge (southern Calabria, Italy) with considerations on the role of causal factors

  • Original Paper
  • Published:
Natural Hazards Aims and scope Submit manuscript

Abstract

The “Costa Viola” mountain ridge (southern Calabria), in the sector between Bagnara Calabra and Scilla, is particularly exposed to geo-hydrological risk conditions. The study area has repeatedly been affected by slope instability events in the last decades, mainly related to debris slides, rock falls and debris flows. These types of slope movements are among the most destructive and dangerous for people and infrastructures, and are characterized by abrupt onset and extremely rapid movements. Susceptibility evaluations to shallow landslides have been performed by only focusing on source activation. A logistic regression approach has been applied to estimating the presence/absence of sources in terms of probability, on the basis of linear statistical relationships with a set of territorial variables. An inventory map of 181 sources, obtained from interpretation of air photographs taken in 1954–1955, has been used as training set, and another map of 81 sources, extracted from 1990 to 1991 photographs, has been adopted for validation purposes. An initial set of 12 territorial variables (i.e. lithology, land use, soil sand percentage, elevation, slope angle, aspect, across-slope and down-slope curvatures, topographic wetness index, distance to road, distance to fault and index of daily rainfall) has been considered. The adopted regression procedure consists of the following steps: (1) parameterization of the independent variables, (2) sampling, (3) calibration, (4) application and (5) evaluation of the forecasting capability. The “best set” of variables could be identified by iteratively excluding one variable at a time, and comparing the ROC results. Through a sensitivity analysis, the role of the considered factors in predisposing shallow slope failures in the study area has been evaluated. The results obtained for the Costa Viola mountain ridge can be considered acceptable, as 98.1 % of the cells are correctly classified. According to the susceptibility map, the village of Scilla and its surroundings fall in the highest susceptibility class.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Akgun A, Dag S, Bulut F (2008) Landslide susceptibility mapping for a landslide-prone area (Findikli, NE of Turkey) by likelihood frequency ratio and weighted linear combination models. Environ Geol 54(6):1127–1143

    Article  Google Scholar 

  • Aleotti P, Chowdhury R (1999) Landslide hazard assessment: summary review and new perspectives. B Eng Geol Environ 58:21–44

    Article  Google Scholar 

  • Althuwaynee OF, Pradhan B, Lee S (2012) Application of an evidential belief function model in landslide susceptibility mapping. Comput Geosci. doi:10.1016/j.cageo.2012.03.003

  • ARSSA—Regione Calabria (2003) Calabrian soils. Map of soils in scale 1:250.000 of Calabria. Rubbettino, Soveria Mannelli (in Italian)

  • Atkinson PM, Massari R (1998) Generalised linear modelling of susceptibility to landsliding in the Central Apennines, Italy. Comput Geosci 24(4):371–383

    Google Scholar 

  • Ayalew L, Yamagishi H (2005) The application of GIS-based logistic regression for landslide susceptibility mapping in the Kakuda-Yahiko Mountains, central Japan. Geomorphology 65:15–31

    Article  Google Scholar 

  • Bai SB, Wang J, Lü G, Zhou P, Hou SS, Xu SN (2010) GIS-based logistic regression for Landslide susceptibility mapping of the Zhongxian segment in the three gorges area China. Geomorphology 115:23–31

    Article  Google Scholar 

  • Bonavina M, Bozzano F, Martino S, Pellegrino A, Prestininzi A, Scandurra R (2005) Mud and debris flows along the coastal slope between Bagnara Calabra and Scilla (Reggio Calabria): susceptibility evaluations. Giornale di Geologia Applicata 2:65–74 (in Italian)

    Google Scholar 

  • Bui DT, Pradhan B, Lofman O, Revhaug I (2012) Landslide susceptibility assessment in Vietnam using support vector machines, decision tree and Naïve Bayes models. Math Probl Eng. doi:10.1155/2012/974638

    Google Scholar 

  • Burton AN (1971) Geological map of Calabria (1:25,000). General Report. Cassa per Opere Straordinarie di Pubblico Interesse nell’Italia Meridionale. Servizio Bonifiche, Roma, I.G.M. Firenze (in Italian)

  • Can T, Nefeslioglu HA, Gokceoglu C, Sonmez H, Duman TY (2005) Susceptibility assessments of shallow earthflows triggered by heavy rainfall at three catchments by logistic regression. Geomorphology 72(1–4):250–271

    Article  Google Scholar 

  • Capparelli G, Iaquinta P, Iovine G, Terranova OG, Versace P (2012) Modelling the rainfall-induced mobilization of a large slope movement in northern Calabria. Nat Hazards 61:247–256

    Article  Google Scholar 

  • Carrara A, Sorriso-Valvo M, Reali C (1982) Analysis of landslide form and incidence by statistical techniques, Southern Italy. Catena 9:35–62

    Article  Google Scholar 

  • CASMEZ (1959) Carta topografica della Calabria in scala 1:10,000. SCAME, Catanzaro

    Google Scholar 

  • Chiaravalloti F, Gabriele S (2009) The Vibo Valentia flood and MSG rainfall evaluation. Atmos Res 93:286–294

    Article  Google Scholar 

  • Choi J, Oh HJ, Lee HJ, Lee C, Lee S (2012) Combining landslide susceptibility maps obtained from frequency ratio, logistic regression, and artificial neural network models using ASTER images and GIS. Eng Geol 124:12–23

    Article  Google Scholar 

  • Christensen R (1997) Log-linear models and logistic regression. Springer, New York

    Google Scholar 

  • Constantin M, Bednarik M, Jurchescu MC, Vlaicu M (2011) Landslide susceptibility assessment using the bivariate statistical analysis and the index of entropy in the Sibiciu Basin (Romania). Environ Earth Sci 63(2):397–406

    Article  Google Scholar 

  • Cruden DM, Varnes DJ (1996) Landslides types and processes. In: Turner AK, Schuster RL (eds) Special Report 247. Landslides: investigation and mitigation. National Research Council, Transportation Research Board, National Academy Press, Washington, pp 36–75

  • Dai FC, Lee CF (2002) Landslide characteristics and slope instability modeling using GIS, Lantau Island, Hong Kong. Geomorphology 42:213–228

    Article  Google Scholar 

  • Das I, Sahoo S, van Westen C, Stein A, Hack R (2010) Landslide susceptibility assessment using logistic regression and its comparison with a rock mass classification system, along a road section in the northern Himalayas (India). Geomorphology 114:627–637

    Article  Google Scholar 

  • Devkota KC, Regmi AD, Pourghasemi HR, Yoshida K, Pradhan B, Ryu IC, Dhital MR, Althuwaynee OF (2012) Landslide susceptibility mapping using certainty factor, index of entropy and logistic regression models in GIS and their comparison at Mugling-Narayanghat road section in Nepal Himalaya. Nat Hazards. doi:10.1007/s11069-012-0347-6

    Google Scholar 

  • Ercanoglu M, Gokceoglu C (2002) Assessment of landslide susceptibility for a landslide-prone area (north of Yenice, NW Turkey) by fuzzy approach. Environ Geol 41:720–730

    Article  Google Scholar 

  • Ermini L, Catani F, Casagli N (2005) Artificial neural networks applied to landslide susceptibility assessment. Geomorphology 66:327–343

    Article  Google Scholar 

  • European Environment Agency (2007) CORINE Land Cover CLC2006 Technical Guidelines. EEA Technical Report 17. EEA, Copenhagen. doi:10.2800/12134

  • Gabriele S (1998) Crotone and the flood event of 14 October 1996. Publ. 1891, CNR-GNDCI, Dipartimento della Protezione Civile, Presidenza del Consiglio dei Ministri, Roma (in Italian)

  • Gomez H, Kavzoglu T (2005) Assessment of shallow landslide susceptibility using artificial neural networks in Jabonosa River Basin, Venezuela. Eng Geol 78(1–2):11–27

    Article  Google Scholar 

  • Greco R, Sorriso-Valvo M (2013) Influence of management of variables, sampling zones and land units on LR analysis for landslide spatial prevision. Nat Hazards Earth Syst 13:2209–2221

    Article  Google Scholar 

  • Greco R, Sorriso-Valvo M, Catalano E (2007) Logistic Regression analysis in the evaluation of mass-movement susceptibility: the Aspromonte case study, Calabria, Italy. Eng Geol 89:47–66

    Article  Google Scholar 

  • Guinau M, Pallas R, Vilaplana JM (2005) A feasible methodology for landslide susceptibility assessment in developing countries: a case study of NW Nicaragua after Hurricane Mitch. Eng Geol 80:316–327

    Article  Google Scholar 

  • Gullà G, Antronico L, Iaquinta P, Terranova O (2008) Susceptibility and triggering scenarios at a regional scale for shallow landslides. Geomorphology 99:39–58

    Article  Google Scholar 

  • Guzzetti F, Carrara A, Cardinali M, Reichenbach P (1999) Landslide hazard evaluation: a review of current techniques and their application in a multi-scale study, Central Italy. Geomorphology 31:181–216

    Article  Google Scholar 

  • Guzzetti F, Reichenbach P, Cardinali M, Galli M, Ardizzone F (2005) Probabilistic landslide hazard assessment at the basin scale. Geomorphology 72:272–299

    Article  Google Scholar 

  • Guzzetti F, Reichenbach P, Ardizzone F, Cardinali M, Galli M (2006) Estimating the quality of landslide susceptibility models. Geomorphology 81(1–2):166–184

    Article  Google Scholar 

  • Hosmer DW, Lemeshow S (1989) Applied logistic regression. Wiley, New York

  • Hungr O, Evans SG, Bovis M, Hutchinson JN (2001) Review of the classification of landslides of the flow type. Environ Eng Geosci 7:221–238

    Google Scholar 

  • Iovine G (2008) Mud-flow and lava-flow susceptibility and hazard mapping through numerical modelling, GIS techniques, historical and geoenvironmental analyses. In: Sànchez-Marrè M, Béjar J, Comas J, Rizzoli A, Guariso G (eds) Proceedings of 4th Biennial meeting of iEMSs, pp 1447–1460

  • Iovine G, Mangraviti P (2009) The CA-model FLOW-S* for flow-type landslides: an introductory account. In: Anderssen R S, Braddock RD, Newham LTH (eds) Proceedings of 18th World IMACS/MODSIM congress, pp 2679–2685

  • Iovine G, Di Gregorio S, Lupiano V (2003a) Debris-flow susceptibility assessment through cellular automata modeling: an example from 15 to 16 December 1999 disaster at Cervinara and San Martino Valle Caudina (Campania, southern Italy). Nat Hazard Earth Sys 3:457–468

    Article  Google Scholar 

  • Iovine G, Di Gregorio S, Lupiano V (2003b) Assessing debris flow susceptibility through cellular automata modelling: an example from the May 1998 disaster at Pizzo d’Alvano (Campania, Southern Italy). In: Rickenmann D, Chen CL (Eds) Debris-flow hazards mitigation: mechanics, prediction and assessment. Proceedings of 3rd DFHM international conference, 1. Millpress Science Publishers, Rotterdam, pp 623–634

  • Iovine G, Iaquinta P, Terranova O (2009) Emergency management of landslide risk during Autumn–Winter 2008/2009 in Calabria (Italy). The example of San Benedetto Ullano. In: Anderssen R S, Braddock RD and Newham LTH (eds) Proceedings of 18th World IMACS/MODSIM Congress, pp 2686–2693

  • Iovine G, Greco R, Gariano SL, Iaquinta P, Pellegrino A, Terranova OG (2013) Shallow-landslide susceptibility in the costa viola mountain ridge (Italia). In: Margottini C, Canuti P, Sassa K (eds) Landslide science and practice, vol 3. Springer, Heidelberg, pp 81–87

    Chapter  Google Scholar 

  • Jaiswal P, van Westen CJ (2009) Estimating temporal probability for landslide initiation along transportation routes based on rainfall thresholds. Geomorphology 12(1–2):96–105

    Article  Google Scholar 

  • Jenks GF (1967) The data model concept in statistical mapping. Int Yearbook Cartogr 7:186–190

    Google Scholar 

  • Kanungo DP, Arora MK, Sarkar S, Gupta RP (2006) A comparative study of conventional, ANN black box, fuzzy and combined neural and fuzzy weighting procedures for landslide susceptibility zonation in Darjeeling Himalayas. Eng Geol 85:347–366

    Article  Google Scholar 

  • Lee S (2007) Comparison of landslide susceptibility maps generated through multiple logistic regression for three test areas in Korea. Earth Surf Proc Land 32(14):2133–2148

    Article  Google Scholar 

  • Lee S, Evangelista DG (2006) Earthquake induced landslide susceptibility mapping using an artificial neural network. Nat Hazard Earth Syst 6:687–695

    Article  Google Scholar 

  • Lee S, Sambath T (2006) Landslide susceptibility mapping in the Damrei Romel area of Cambodia using frequency ratio and logistic regression models. Environ Geol 50:847–855

    Article  Google Scholar 

  • Lee MJ, Choi JW, Oh HJ, Won JS, Park I, Lee S (2012) Ensemble-based landslide susceptibility maps in Jinbu area, Korea. Environ Earth Sci. doi:10.1007/s12665-011-1477-y

  • Mathew J, Jha VK, Rawat GS (2009) Landslide susceptibility zonation mapping and its validation in part of Garhwal Lesser Himalaya, India, using binary logistic regression analysis and receiver operating characteristic curve method. Landslides 6:17–26

    Article  Google Scholar 

  • Melchiorre C, Matteucci M, Azzoni A, Zanchi A (2008) Artificial neural networks and cluster analysis in landslide susceptibility zonation. Geomorphology 94:379–400

    Article  Google Scholar 

  • Moore ID, Grayson RB, Ladson AR (1991) Digital terrain modeling: a review of hydrological, geomorphological, and biological applications. Hydrol. Process 5:3–30

    Article  Google Scholar 

  • Muthu K, Petrou M, Tarantino C, Blonda P (2008) Landslide possibility mapping using fuzzy approaches. IEEE T Geosci Remote 46(4):1253–1265

    Article  Google Scholar 

  • Nefeslioglu HA, Gokceoglu C, Sonmez H (2008) An assessment on the use of logistic regression and artificial neural networks with different sampling strategies for the preparation of landslide susceptibility maps. Eng Geol 97:171–191

    Article  Google Scholar 

  • Nefeslioglu HA, Sezer E, Gokceoglu C, Bozkir AS, Duman TY (2010) Assessment of landslide susceptibility by decision trees in the metropolitan area of Istanbul, Turkey. Math Probl Eng. doi:10.1155/2010/901095

  • Oh HJ, Lee S (2010) Cross-validation of logistic regression model for landslide susceptibility mapping at Geneoung areas, Korea. Disaster Adv 3(2):44–55

    Google Scholar 

  • Oh HJ, Pradhan B (2011) Application of a neuro-fuzzy model to landslide susceptibility mapping for shallow landslides in tropical hilly area. Comput Geosci 37(9):1264–1276

    Article  Google Scholar 

  • Ohlmacher GC, Davis JC (2003) Using multiple logistic regression and GIS technology to predict landslide hazard in northeast Kansas, USA. Eng Geol 69:331–343

    Article  Google Scholar 

  • Pellegrino A, Borrelli S (2007) Analysis of slope instability in Calabria. In: Trigila A (ed) Rapporto sulle frane in Italia. Il progetto IFFI—Metodologia, risultati e rapporti regionali. APAT, Roma, pp 599–631 (in Italian)

  • Petrucci O, Pasqua AA (2012) Damaging events along roads during bad weather periods: a case study in Calabria (Italy). Nat Hazard Earth Sys 12:365–378

    Article  Google Scholar 

  • Poudyal CP, Chang C, Oh HJ, Lee S (2010) Landslide susceptibility maps comparing frequency ratio and artificial neural networks: a case study from the Nepal Himalaya. Environ Earth Sci 61(5):1049–1064

    Article  Google Scholar 

  • Pourghasemi HR, Gokceoglu C, Pradhan B, Deylami Moezzi K (2012a) Landslide susceptibility mapping using a spatial multi criteria evaluation model at Haraz Watershed, Iran. In: Pradhan B, Buchroithner M (eds) Terrigenous mass movements. Springer, Berlin, pp 23–49

    Chapter  Google Scholar 

  • Pourghasemi HR, Mohammady M, Pradhan B (2012b) Landslide susceptibility mapping using index of entropy and conditional probability models in GIS: Safarood Basin, Iran. Catena 97:71–84

    Article  Google Scholar 

  • Pradhan B (2010) Application of an advanced fuzzy logic model for landslide susceptibility analysis. Int J Comput Intell Syst 3(3):370–381

    Article  Google Scholar 

  • Pradhan B, Lee S (2010) Landslide susceptibility assessment and factor effect analysis: back-propagation artificial neural networks and their comparison with frequency ratio and bivariate logistic regression modelling. Environ Modell Softw 25(6):747–759

    Article  Google Scholar 

  • Pradhan B, Lee S, Buchroithner MF (2009) Use of geospatial data for the development of fuzzy algebraic operators to landslide hazard mapping: a case study in Malaysia. Appl Geomat 1:3–15

    Article  Google Scholar 

  • Rossi M, Guzzetti F, Reichenbach P, Mondini AC, Peruccacci S (2010) Optimal landslide susceptibility zonation based on multiple forecast. Geomorphology 114:129–142

    Article  Google Scholar 

  • Saito H, Nakayama D, Matsuyama H (2009) Comparison of landslide susceptibility based on a decision-tree model and actual landslide occurrence: the Akaishi Mountains, Japan. Geomorphology 109:108–121

    Article  Google Scholar 

  • Sezer EA, Pradhan B, Gokceoglu C (2011) Manifestation of an adaptive neuro-fuzzy model on landslide susceptibility mapping: Klang valley, Malaysia. Expert Syst Appl 38(7):8208–8219

    Article  Google Scholar 

  • Shannon CE (1948) A mathematical theory of communication. Bell Syst Technol J 27(379–423):623–656

    Article  Google Scholar 

  • Sheskin DJ (2000) Handbook of parametric and nonparametric statistical procedures, 2nd edn. Chapman and Hall/CRD, New York

    Google Scholar 

  • Sorriso-Valvo M, Antronico L, Gaudio R, Gullà G, Iovine G, Merenda G, Minervino I, Nicoletti PG, Petrucci O, Terranova O (2004) Map of slope instabilities caused by the 8–10 September 2000 rainfall event in southern Calabria. CNR-GNDCI, Publ. 2859. Rubbettino, Soveria Mannelli (in Italian)

  • Sorriso-Valvo M, Greco G, Catalano E (2009) Spatial prediction of regional scale mass movement using the logistic regression analysis and GIS—Calabria, Italy. Israel J Earth Sci 57:263–280

    Article  Google Scholar 

  • Sujatha ER (2012) Geoinformatics based landslide susceptibility mapping using probabilistic analysis and entropy index of Tevankarai stream sub-watershed, India. Disaster Adv 5(3):26–33

    Google Scholar 

  • Terranova O (2004) Caratteristiche degli eventi pluviometrici a scala giornaliera in Calabria. Proc. XXIX Convegno di Idraulica e Costruzioni Idrauliche, 7–10

  • Terranova OG, Iaquinta P (2011) Temporal properties of rainfall events in Calabria (southern Italy). Nat Hazard Earth Sys 11:751–757

    Article  Google Scholar 

  • Terranova OG, Greco R, Sorriso-Valvo M (2009) Suscettibilità alle frane in Calabria. Analisi dell’hazard dovuto alle piogge. CNR-IRPI Report no. 789, Cosenza

  • Terranova OG, Iaquinta P, Gariano SL, Greco R, Iovine G (2013) CMSAKe: a hydrological model to forecasting landslide activations. In: Margottini C, Canuti P, Sassa K (eds) Landslide science and practice, 3. Springer, Heidelberg, pp 73–79

    Chapter  Google Scholar 

  • Terranova OG, Gariano SL, Greco R, Iovine G (in prep.) Shallow-landslide susceptibility in Calabria. Considerations on the role of predisposing causal factors

  • Thiery Y, Malet JP, Sterlacchini S, Puissant A, Maquaire O (2007) Landslide susceptibility assessment by bivariate methods at large scales: application to a complex mountainous environment. Geomorphology 92:38–59

    Article  Google Scholar 

  • Tortorici L (1982) Lineamenti geologico-strutturali dell’Arco Calabro Peloritano (Geologic-structural lineaments of the Calabrian-Peloritan Arc). Società Italiana di Mineralogia e Petrografia 38:927–940

    Google Scholar 

  • Tortorici L, Monaco C, Tansi C, Cocina O (1995) Recent and active tectonics in the Calabrian Arc (Southern Italy). Tectonophysics 243:37–55

    Article  Google Scholar 

  • Tortorici G, Bianca M, Monaco C, Tortorici L, Tansi C, De Guidi G, Catalano S (2002) Quaternary normal faulting and marine terracing in the area of Capo Vaticano and S. Eufemia Plain (southern Calabria). Stud Geol Camerti 1:155–171

    Google Scholar 

  • Tunusluoglu MC, Gokceoglu C, Nefeslioglu HA, Sonmez H (2008) Extraction of potential debris source areas by logistic regression technique: a case study from Barla, Besparmak and Kapi mountains (NW Taurids, Turkey). Environ Geol 54(1):9–22

    Article  Google Scholar 

  • Vahidnia MH, Alesheikh AA, Alimohammadi A, Hosseinali F (2010) A GIS-based neuro-fuzzy procedure for integrating knowledge and data in landslide susceptibility mapping. Comput Geosci 36(9):1101–1114

    Article  Google Scholar 

  • Van den Eeckhaut M, Marre A, Poesen J (2010) Comparison of two landslide susceptibility assessments in the Champagne-Ardenne region (France). Geomorphology 115:141–155

    Article  Google Scholar 

  • van Westen CJ, Castellanos Abella EA, Sekhar LK (2008) Spatial data for landslide susceptibility, hazards and vulnerability assessment: an overview. Eng Geol 102:112–131

    Article  Google Scholar 

  • Versace P, Ferrari E, Gabriele S, Rossi F (1989) Flood evaluation in Calabria. CNR-GNDCI, Publ. 987, CNR IRPI, Cosenza

  • Wan S (2009) A spatial decision support system for extracting the core factors and thresholds for landslide susceptibility map. Eng Geol 108(3–4):237–251

    Article  Google Scholar 

  • Westaway R (1993) Quaternary uplift of Southern Italy. J Geophys Res 98(B12):21741–21772

    Article  Google Scholar 

  • Xu C, Xu X, Dai F, Xiao J, Tan X, Yuan R (2012) Landslide hazard mapping using GIS and weight of evidence model in Qingshui River watershed of 2008 Wenchuan earthquake struck region. J Earth Sci 23:97–120

    Article  Google Scholar 

  • Yalcin A, Reis S, Aydinoglu AC, Yomralioglu T (2011) A GIS-based comparative study of frequency ratio, analytical hierarchy process, bivariate statistics and logistics regression methods for landslide susceptibility mapping in Trabzon, NE Turkey. Catena 85:274–287

    Article  Google Scholar 

  • Yilmaz I (2009) Landslide susceptibility mapping using frequency ratio, logistic regression, artificial neural networks and their comparison: a case study from Katlandslides (Tokat-Turkey). Comput Geosci 35:1125–1138

    Article  Google Scholar 

  • Yilmaz I (2010) Comparison of landslide susceptibility mapping methodologies for Koyulhisar, Turkey: conditional probability, logistic regression, artificial neural networks, and support vector machine. Environ Earth Sci 61(4):821–836

    Article  Google Scholar 

  • Zadeh LA (1965) Fuzzy sets. Inf Control 8:338–353

    Article  Google Scholar 

  • Zimmerman HJ (1996) Fuzzy set theory: its applications. Kluwer-Nijhoff publishing, Boston

    Google Scholar 

Download references

Acknowledgments

Authors warmly thank the anonymous referees and the editor for their precious criticisms and suggestions that permitted to improve the original version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oreste G. Terranova.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Iovine, G.G.R., Greco, R., Gariano, S.L. et al. Shallow-landslide susceptibility in the Costa Viola mountain ridge (southern Calabria, Italy) with considerations on the role of causal factors. Nat Hazards 73, 111–136 (2014). https://doi.org/10.1007/s11069-014-1129-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11069-014-1129-0

Keywords

Navigation