Skip to main content

Advertisement

Log in

Optical satellite imagery for quantifying spatio-temporal dimension of physical exposure in disaster risk assessments

  • Original Paper
  • Published:
Natural Hazards Aims and scope Submit manuscript

Abstract

This work addresses the use of remote sensing imagery to quantify the built environment and its spatial and temporal changes. It identifies building footprint map, building location map and built-up area map as information products that can be used to quantify physical exposure, one of the variables required in disaster risk assessments. The paper also reviews urban land use maps and urban classes in land cover maps as potential source for deriving exposure information. The paper focuses on the latest generation of satellite-borne remote sensing imaging systems that deliver high-resolution optical imagery able to resolve buildings and other three-dimensional man-made constructions. This work also reviews the semantics, the spatial unit used to define physical exposure, image processing procedures and change techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Angiuli E, Trianni G (2012) A robust methodology for global urban mapping applying the normalized difference spectral index to landsat data, submitted to Remote Sensing of Environment

  • Bal IE, Bommer J, Stafford P, Crowley H, Pinho R (2010) The influence of geographical resolution of urban exposure data in an earthquake loss model for Istanbul. Earthq Spectra 26L:619–634

    Article  Google Scholar 

  • Blockley D, Agarwal J, Pinto J, Woodman N (2002). Structural vulnerability, reliability and risk. Prog Struct Eng Mater 4:203–212. http://onlinelibrary.wiley.com/doi/10.1002/pse.109/pdf

    Google Scholar 

  • Brunner D, Lemoine G, Bruzzone L (2010) Earthquake damage assessment of buildings using VHR Optical and SAR imagery. IEEE Trans Geosci Remote Sens 48(5):2403–2420

    Article  Google Scholar 

  • Bustos C, Campanella O, Kpalma K, Magnago F, Ronsin J (2011) A method for change detection with multi-temporal satellite images based on principal component analysis. 6th International workshop on the analysis of multi-temporal remote sensing images (Multi-Temp), 12–14 July 2011, pp 197–200

  • Calvi G, Pinho R, Magenes G, Bommer J, Restrepo-Velez L, Crowley H (2006) Development of seismic vulnerability assessment methodologies over the past 30 years. ISET J Earthq Technol 43:75–104

    Google Scholar 

  • Comber A, Fisher R, Wadsworth R (2005) You know what land cover is but does anyone else? … an investigation into semantic and ontological confusion. Int J Remote Sens 26:223–228

    Article  Google Scholar 

  • Corban C, Saito K, Dell’Oro L, Bjorgo E, Gill S, Piard B, Huyck C, Kemper T, Lemoine G, Spence R, Shankar R, Senegas O, Ghesqiere F, Lalllemant D, Evans G, Gartley R, Toro J, Ghosh S, Svekla W, Adamas B, Eguchi R (2011) A comprehensive analysis of building damage in the 12 January 2010 Mw7 Haiti earthquake using high resolution satellite and aerial imagery. Photogramm Eng Remote Sens 11:997–1009

    Google Scholar 

  • Deichmann U, Ehrlich D, Small C, Zeug G (2011) Using high resolution satellite data for the identification of urban natural disaster risk. World Bank Report. http://www.gfdrr.org/gfdrr/node/813. Accessed 13 Jan 2012

  • Dong P, Ramesh S, Nepali A (2010) Evaluation of small-area population estimation using LiDAR, Landsat TM and parcel data. Int J Remote Sens 31(21):5571–5586

    Article  Google Scholar 

  • Doxani G, Karantzalos K, Tsakiri-Strati M (2010) Automatic change detection in urban areas under a scale-space objected-oriented classification framework. Proceedings of GEOgraphic Object-Based Image Analysis (GEOBIA), Ghent, 29 June–2 July 2010. http://geobia.ugent.be/proceedings/html/papers.html. Accessed 10 Aug 2012

  • EEA (2000) European environmental agency. CORINE technical guide: Addendum 2000. http://www.eea.europa.eu/publications/tech40add. Accessed 13 Jan 2012

  • EEA (2011a) Urban morphological zones changes 2000–2006 (UMZ2000-2006) - F3v0. http://www.eea.europa.eu/data-and-maps/data/urban-morphological-zones-changes-2000. Accessed 3 July 2012

  • EEA (2011b) Urban morphological zones changes 1990–2000 (UMZ1990-2000) - F3v0. http://www.eea.europa.eu/data-and-maps/data/urban-morphological-zones-changes-1990-2000-umz1990-2000-f1v0-1. Accessed 3 July 2012

  • Ehrlich D, Bielski C (2011) Texture based change detection of built up on SPOT panchromatic imagery using PCA. Joint Urban Remote Sens Event, 11–13 April 2011. Muenchen

  • Ehrlich D, Lang S, Laneve G, Mubareka S, Schneiderbauer S, Tiede D (2009a) Can earth observation help to improve information on population? Indirect population estimations from EO derived geo-spatial data: contribution from GMOSS. In: Jasani B, Pesaresi M, Schneiderbauer S, Zeug G (eds) Remote sensing from space-supporting international peace and security. Springer, Berlin, pp 211–237

    Chapter  Google Scholar 

  • Ehrlich D, Moula M, Louvrier C, Gerhardinger A (2009b) Quantifying the building stock for disaster risk assessment in the Caribbean region. In: Proceedings from the 33rd international symposia on remote sensing of environment, Sustaining the Millennium Development Goals, vol. 1–2, May 2009

  • Ehrlich D, Zeug G, Gallego J, Gerhardinger A, Caravaggi I, Pesaresi M (2010) Quantifying the building stock from optical high resolution satellite imagery for assessing disaster risk. Geocarto Int 25(4):281–293

    Article  Google Scholar 

  • Erberik M, Cullu S (2006) Assessment of seismic fragility curves for low-and mid-rise reinforced concrete frame building using Duzce field database. Advance Earthq Eng Urban Risk Reduct 66:151–166

    Article  Google Scholar 

  • FEMA (2003) Federal emergency management agency. HAZUS—MH MR3. Multi-hazard loss estimation methodology, Washington, DC

  • Freire S, Santos T, Navarro A, Soares F, Dinis J, Afonso N, Fonseca A, Tenedorio J A (2010) Extraction of buildings from QuickBird imagery for municipal planning purposes: quality assessment considering existing mapping standards. In: 30 EARsel symposium: remote sensing for science, education and culture, Paris, France

  • Gamba P, Dell’Acqua F, Lisini G (2009) BREC: the Built-up area RECognition tool. Joint Urban Remote Sens Event, 22–24 May 2009, Shanghai

  • Gao J (2009) Digital analysis of remotely sensed imagery. McGraw-Hill, New York, pp 645

    Google Scholar 

  • Giada S, DeGroeve T, Ehrlich D, Soille P (2003) Information extraction from very high resolution satellite images over Lukole refugee camp, Tanzania. Int J Remote Sens 24:4251–4266

    Article  Google Scholar 

  • Gianinetto M (2008) Updating large scale topographic databases in Italian Urban areas with submeter QuickBird Images. Int J Navig Obs. http://www.hindawi.com/journals/ijno/2008/725429/. Accessed 13 Jan 2012

  • Griffiths P, Hostert P, Gruebner O, van der Linden S (2010) Mapping megacity growth with multi-sensor data. Remote Sens Environ 114:426–439

    Article  Google Scholar 

  • Gueguen, L, Pesaresi M, Ehrlich D, Lu L (2011) Urbanization analysis by mutual information based change detection between SPOT 5 panchromatic images. Multitemp2011, 6th international workshop on the analysis of multi-temporal remote sensing images, 12–14 July 2011, Trento

  • Gueguen L, Pesaresi M, Gerhardinger A, Soille P (2012) Characterizing and counting roofless buildings in very high resolution optical images. IEEE Geosci Remote Sens Lett 9:114–118

    Article  Google Scholar 

  • Guindon B, Zhang Y, Dillabaugh C (2004) Landsat TM urban mapping based on a combined spectral-spatial methodology. Remote Sens Environ 92:218–232

    Article  Google Scholar 

  • Hancilar U, Tuzun C, Yenidogan C, Erdik M (2010) ELER software: a new tool for urban earthquake loss assessment. Nat Hazards Earth Syst Sci 10:2677–2696

    Article  Google Scholar 

  • Haralik R (1979) Statistical and structural approaches to texture. Proc IEEE 67:786–804

    Article  Google Scholar 

  • Herold M, Goldstein NC, Clarke KC (2003) The spatiotemporal form of urban growth: measurement, analysis and modelling. Remote Sens Environ 86:286–302

    Article  Google Scholar 

  • Herold M, Roberts DA, Gernder ME, Dennison PE (2004) Spectrometry for urban are remote sensing: development and analysis of a spectral library from 350 to 2400 nm. Remote Sens Environ 91:304–319

    Article  Google Scholar 

  • IGN (Institut Geographique National (2002) Topographic mapping at 1:25000. No. 4601GT. Espace IGN, 107, rue La Boetie 75008 Paris

  • ISDR (International Strategy for Disaster Reduction) (2009a) United Nations international strategy for disaster risk reduction. terminology on disaster risk reduction. http://www.unisdr.org/we/inform/terminology. Accessed 13 Jan 2012

  • ISDR (International Strategy for Disaster Reduction) (2009b) Global assessment report on disaster risk reduction. http://www.preventionweb.net/english/hyogo/gar/report/index.php?id=9413. Accessed 13 Jan 2012

  • Jaiswal K, Wald D, Porter K (2010) A global building inventory for earthquake loss estimation and risk management. Earthq Spectra 26:731–748

    Article  Google Scholar 

  • Ji C, Liu Q, Sun D, Wang S, Lin P, Li X (2001) Monitoring urban expansion with remote sensing in China. Int J Remote Sens 22:1441–1455

    Google Scholar 

  • Kemper T, Jenerowicz M, Gueguen L, Poli D, Soille P (2011a) Monitoring changes in the Menik Farm IDP camps in Sri Lanka using multi-temporal very high-resolution satellite data. Int J Digit Earth 4:81–106

    Article  Google Scholar 

  • Kemper T, Jenerowicz M, Pesaresi M, Soille P (2011b) Enumeration of dwellings in Darfur camps from GeoEye-1 satellite images using mathematical morphology. IEEE J Sel Top Appl Earth Obser Remote Sens 4:8–15

    Article  Google Scholar 

  • LCCS (Land Cover Classification System) (2005) Classification concepts and user manual. Software version 2. Di Gregorio, A., and Jansen, L.J.M. Environment and Natural Resources Series No. 8. FAO, Rome. 2005

  • Lee D, Shan J, Bethel J (2003) Class-guided building extraction from IKONOS. Photogramm Eng Remote Sens 69:143–150

    Google Scholar 

  • Li X, Yeh A (1998) Principal component analysis of staked multi-temporal images for the monitoring of rapid urban expansion in the Pearl River Delta. Int J Remote Sens 19:1501–1518

    Article  Google Scholar 

  • Lin C, Nevatia R (1998) Building detection and description from a single intensity image. Comput Vis Image Underst 72:101–121

    Article  Google Scholar 

  • Liu X, Clarke KC (2002) Estimation of residential population using high resolution satellite imagery. In: Proceedings, third international symposium on remote sensing of Urban Areas, June 2002, Istanbul, Turkey, pp 153–160

  • Liu Z, Cui S,Yan Q (2008) Building extraction from high resolution satellite imagery based on multi-scale image segmentation and model matching. Earth Observ Remote Sens Appl. EORSA 2008. International Workshop, June 30 2008–July 2 2008, pp 1–7

  • Lu Z, Im J, Quackenbush L, Halligan K (2010) Population estimation based on multi-sensor data fusion. Int J Remote Sens 31(21):5587–5604

    Article  Google Scholar 

  • Miura H, Midorikawa, S, Fujimoto K (2004) Automated building detection from high-resolution satellite image for updating GIS building inventory data. In: 13th world conference on earthquake engineering Vancouver, B.C., Canada, August 1-6, 2004

  • Miura H, Midorikawa S, Eeri M (2006) Updating GIS building inventory data using high-resolution satellite images for Earthquake damage assessment: application to Metro Manila, Philippines. Earthquake Spectra 22:151–168

    Article  Google Scholar 

  • GEM (Global Earthquake Model) (2012) Global earthquake model initiative, http://www.globalquakemodel.org/. Accessed 13 Jan 2012

  • Moeller M, Blaschke T (2006) Urban change extraction from high resolution satellite image. ISPRS technical commission II symposium, Vienna, 12–14 July 2006

  • Mueller M, Segl K, Heiden U, Kaufmann H (2006) Potential of high-resolution satellite data in the context of vulnerability of buildings. Nat Hazards 38:247–258

    Article  Google Scholar 

  • Niebergall S, Loew A, Mauser W (2007) Object-oriented analysis of very high-resolution quickbird data for mega city research in Delhi/India. Urban Remote Sensing Joint Event, April 2007, pp.1-8, 11-13

  • Ouzounis GK, Soille P (2012) Attribute constrained connectivity and alpha-tree representation. IEEE Trans Pattern Anal Mach Intell (Submitted)

  • Ouzounis G, Pesaresi M, Soille P (2012) Differential area profiles: decomposition properties and efficient computation. IEEE Trans Pattern Anal Mach Intell 34:1533–1548

    Article  Google Scholar 

  • Ozdemir B, Askoy S, Eckert S, Pesaresi M, Ehrlich D (2009) Performance measures for object detection evaluation. Pattern Recogn Lett 31:1128–1137

    Article  Google Scholar 

  • Pagot E, Pesaresi M (2008) Systematic study of the urban post-conflict change classification performance using spectral and structural features in a support vector machine. IEEE J Sel Top Appl Earth Obser Remote Sens 1:120–128

    Article  Google Scholar 

  • Pesaresi M, Ouzounis GK, Gueguen L (2012) A new compact representation of morphological profiles: report on first massive VHR image processing at the JRC. Proc SPIE 8390:839025

    Article  Google Scholar 

  • Pesaresi M, Ehrlich D (2009) A method to quantify built up structures from optical VHR imagery. Chapter 3. In: Gamba P, Herold M (eds) Global mapping of human settlements. Taylor and Francis, London, pp 27–58

    Google Scholar 

  • Pesaresi M, Gerhardinger A, Kaytakire F (2008) A robust built-up area presence index by anisotropic rotation–invariant textural measure. IEEE J Sel Top Appl Earth Obser Remote Sens 3:180–192

    Article  Google Scholar 

  • Pesaresi M, Ehrlich D, Caravaggi I, Kauffmann M, Louvrier C (2011) Toward global automatic built-up area recognition using optical VHR imagery. IEEE J Sel Top Appl Earth Obser Remote Sens 4:923–934

    Article  Google Scholar 

  • Poli D, Caravaggi I (2012) 3d modelling of large urban areas with stereo VHR satellite imagery for risk and damage assessment: lessons learned (Submitted to Natural Hazards)

  • Poli D, Angiuli E, Remondino F (2010) Radiometric and geometric analysis of WorldView-2 stereo scenes. In: international archives of photogrammetry and remote sensing and spatial information sciences, Vol. XXXVIII, Part 1, 15–18 June 2010, Calgary, Canada

  • Polli D, Dell’Acqua F, Gamba P (2009) First steps towards a framework for earth observation (EO)-based seismic vulnerability evaluation. Environ Semeiot 2:16–30

    Article  Google Scholar 

  • Polli D, Dell’Acqua F, Gamba P (2010) Exploiting satellite data for large-scale assessment of seismic vulnerability in human settlement areas (GEO DI-09-01A): ESA’s living planet symposium Bergen, 2010

  • Seifert F (2009) Improving urban monitoring toward a European Urban Atlas. In: Gamba P, Herold M (eds) Global mapping of human settlement. Chapter 11. Taylor and Francis series in remote sensing applications, pp 231–248

  • Seto K, Woodcock C, Song C, Huang X, Lu J, Kaufmann R (2002) Monitoring land-use change in the Pearl River Delta using Landsat TM. Int J Remote Sens 23:1985–2004

    Article  Google Scholar 

  • Shao Y, Taff G, Walsha S (2011) Shadow detection and building height estimation using IKONOS data. Int J Remote Sens 32:6929–6944

    Article  Google Scholar 

  • Silván-Cárdenas JL, Wang L, Rogerson P, Wu C, Feng T, Kamphaus BD (2010) Assessing fine-spatial-resolution remote sensing for small-area population estimation. Int J Remote Sens 31(21):5605–5634

    Article  Google Scholar 

  • Small C (2003) High spatial resolution spectral mixture analysis of urban reflectance. Remote Sens Environ 88:170–186

    Article  Google Scholar 

  • Soille P (2008) Constrained connectivity for hierarchical image partitioning and simplification. IEEE Trans Pattern Anal Mach Intell 30:1132–1145

    Article  Google Scholar 

  • Soille P (2010) Constrained connectivity for the processing of very-high-resolution satellite images. Int J Remote Sens 31:5879–5893

    Article  Google Scholar 

  • Stassopoulou A, Caelli Y (2000) Building detection using Bayesian networks. Int J Pattern Recognit Artif Intell 14:715–733

    Google Scholar 

  • Stow D, Lopez A, Lippitt C, Hinton S, Weeks J (2007) Object-based classification of residential land use within Accra, Ghana based on QuickBird satellite data. Int J Remote Sens 28:5167–5173

    Article  Google Scholar 

  • Tao C, Hu Y, Jang W (2004) Photogrammetric exploitation of IKONOS imagery for mapping applications. Int J Remote Sens 25:2833–2853

    Article  Google Scholar 

  • Tatem A, Noor M, Hay S (2004) Defining approaches to settlement mapping for public health management I Kenya using medium spatial resolution satellite imagery. Remote Sens Environ 93:42–52

    Article  Google Scholar 

  • Taubenböck H, Roth A (2007) A transferable and stable object oriented classification approach in various urban areas and various high resolution sensors. Urban Remote Sens Joint Event, 11–13 April 2007, pp 1–7

  • Taubenböck H, Roth A, Dech S, Mehl H (2009a) Assessing building vulnerability using synergistically remote sensing and civil engineering. In: Krek R, Zlatanova F (eds) Urban and regional data management. Taylor and Francis Group, London, pp 287–300

    Google Scholar 

  • Taubenböck H, Wegmann M, Roth A, Mehl H, Dech S (2009b) Urbanization in India – Spatio-temporal analysis using remote sensing data. Comput Environ Urban Syst 33:179–188

    Article  Google Scholar 

  • Taubenböck H, Esch T, Felbier A, Wiesner M, Roth A, Dech S (2012) Monitoring urbanization in mega cities from space. Remote sens Environ 117:162–176

    Article  Google Scholar 

  • Tenerelli P, Ehrlich D (2011) Analysis of built-up spatial pattern at different sales: can scattering affect map accuracy? Int J Digital Earth 4:107–116

    Article  Google Scholar 

  • Toutin T (2004a) DSM generation and evaluation from QuickBird stereo imagery with 3D physical modelling. Int J Remote Sens 25:5181–5193

    Article  Google Scholar 

  • Toutin T (2004b) Comparison of stereo-extracted DTM from different high-resolution sensors: SPOT-5, EROS-A, IKONOS-II, and QuickBird. IEEE Trans Geosci Remote Sens 42:2121–2129

    Article  Google Scholar 

  • Toutin T (2006a) Comparison of DSMs generated from stereo HR images using 3D physical or empirical models. Photogramm Eng Remote Sens 72:597–604

    Google Scholar 

  • Toutin T (2006b) Generation of DSM from SPOT-5 in-track HRS and across-track HRG stereo data using spatiotriangulation and autocalibration. ISPRS J Photogramm Remote Sens 60:170–181

    Article  Google Scholar 

  • Tucker C, Grant D, Dykstra J (2004) NASA’s global orthorectified Landsat TM data set. Photogramm Eng Remote Sens 70:313–322

    Google Scholar 

  • Urban Atlas (2010) Global monitoring for environment and security: mapping guide for a European Urban Atlas. Document Version 1.1 dated 26/08/2010. http://www.eea.europa.eu/data-and-maps/data/urban-atlas (last visited 16/01/2012)

  • Vamvatsikos D, Kouris L, Panagopoulos G, Kappos A, Nigro E, Rossetto T, Lloyd T (2010) Structural vulnerability assessment under natural hazards: a review. Proceedings of COST action C26 final international conference on Urban habitat construction under catastrophic events, Naples 17–18 Sep 2010, pp 711–723

  • Vogelman J, Sohl T, Howard S (1988) Regional characterization of land cover using multiple sources of data. Photogramm Eng Remote Sens 64:45–57

    Google Scholar 

  • Vogelmann J, Howard S, Yang L, Larson C, Wylie B, Van Driel J (2001) Completion of the 1990’s national land cover data set for the conterminous United States. Photogramm Eng Remote Sens 67:650–662

    Google Scholar 

  • Weng Q (2008) Remote sensing of impervious surfaces. Taylor and Francis series in Remote Sensing Applications CRC Press, Taylor and Francis Group, New York 455

    Google Scholar 

  • Wieland M, Pittore M, Parolai S, Zschau J, Moldobekov B, Begaliev U (2012) Estimating building inventory for rapid seismic vulnerability assessment: towards an integrated approach based on multi-source imaging. Soil Dynam Earthq Eng 36:78–83

    Article  Google Scholar 

  • Wu SS, Wang L, Qiu X (2008) Incorporating GIS building data and census housing statistics for sub-block-level population estimation. The Prof Geogr 6(1):121–135

    Article  Google Scholar 

  • Xu H (2007) Extraction of urban built-up land features from Landsat TM imagery using a thematic-oriented index combination technique. Photogramm Eng Remote Sens 73:1381–1391

    Google Scholar 

  • Zha Y, Gao J, Ni S (2003) Use of normalized difference built-up index in automatically mapping urban areas from TM imagery. Int J Remote Sens 24:583–594

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniele Ehrlich.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ehrlich, D., Tenerelli, P. Optical satellite imagery for quantifying spatio-temporal dimension of physical exposure in disaster risk assessments. Nat Hazards 68, 1271–1289 (2013). https://doi.org/10.1007/s11069-012-0372-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11069-012-0372-5

Keywords

Navigation