Skip to main content

Advertisement

Log in

Observations of volcanic emissions from space: current and future perspectives

  • Original Paper
  • Published:
Natural Hazards Aims and scope Submit manuscript

Abstract

Volcanoes worldwide pose a major threat to humans at both local and global scales. The effective monitoring of volcanoes is essential to manage and reduce risk associated with the threat that they pose. The measurement of volcanic cloud composition can provide important clues to the underlying volcanic processes and can be indicative of impending eruption. Hazards posed by plumes to humans and animals are significant, as well as the potential climatic impacts and the threat to aircraft by the ingestion of volcanic ash all justify careful monitoring. Recent advances in instrument technology have allowed for high resolution monitoring of volcanic clouds from satellite-based instruments. There exists a suite of instruments with varying spatial, spectral and temporal resolutions, which when used in conjunction can provide detailed information about cloud properties. Such instruments have the capability to quantify sulphur dioxide, ash and aerosol content as well as the spatial and vertical distribution of species. Here we present an overview of the range of instruments useful for such monitoring, outline their functionality and describe the potential of future missions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

ACE:

Aerosol/Cloud/Ecosystems mission

ADEOS:

Advanced earth observation satellite

AIRS:

Atmospheric infrared sounder

AMF:

Air mass factor

ASCENDS:

Active sensing of CO2 emissions over nights, days and seasons

ASTER:

Advanced spaceborne thermal emission and reflection radiometer

ATMS:

Advanced technology microwave sounder

AVHRR:

Advanced very high resolution radiometer

BRD:

Band residual difference

BrO:

Chemical symbol for bromine monoxide

BUV:

Backscattered ultraviolet

CALIOP:

Cloud-aerosol light detection and ranging (LIDAR)

CERES:

Cloud and earth radiant energy system

CLARREO:

Climate absolute radiance and refractivity observatory

CrIS:

Cross-track infrared sounder

CrIMSS:

CrIS and ATMS

CO2 :

Chemical symbol for carbon dioxide

DOAS:

Differential optical absorption spectroscopy

ENVISAT:

Environmental satellite

EP:

Earth probe

ESA:

European space agency

EOS:

Earth observing system

GACM:

Global atmospheric composition mission

GEO-CAPE:

Geostationary coastal and air pollution events

GOES:

Geostationary operational environmental satellite

GOME:

Global ozone monitoring experiment

H2O:

Chemical symbol for water

H2CO:

Chemical symbol for formaldehyde

H2SO4 :

Chemical symbol for sulphuric acid

HCL:

Chemical symbol for hydrogen chloride

HF:

Chemical symbol for hydrogen fluoride

HIRS:

High resolution infrared radiation sounder

HyspIRI:

Hyperspectral infrared imager

IASI:

Infrared atmospheric sounding interferometer

IR:

Infrared

LEO:

Low earth orbit

LF:

Linear fit

LIDAR:

Light detection and ranging

LOWTRAN:

Low resolution atmospheric transmission

MetOp:

Meteorological operational satellite

MIS:

Microwave imager/sounder

MLS:

Microwave limb sounder

MODIS:

Moderate resolution imaging spectroradiometer

MODTRAN:

Moderate resolution atmospheric transmission

MSG:

Meteosat second generation

MSU:

Microwave sounding unit

MTSAT:

Multifunctional transport satellite

NASA:

National aeronautics and space administration

NO2 :

Chemical symbol for nitrogen dioxide

NOAA:

National oceanic and atmospheric administration

NOPAC:

North Pacific

NPOESS:

National polar-orbiting operational environmental satellite system

OMI:

Ozone monitoring instrument

OMPS:

Ozone mapping and profiler suite

PARASOL:

Polarization and anisotropy of reflectances for atmospheric sciences coupled with observations from a LIDAR

PREMIER:

Process exploration through measurements of infrared and millimetre-wave emitted radiation

RAT:

Robust AVHRR technique

SBUV:

Solar backscattered ultraviolet

SCIAMACHY:

Scanning imaging absorption spectrometer for atmospheric chartography

SEVIRI:

Spinning enhanced visible and infrared imager

SSO:

Sun-synchronous orbit

SWIR:

Shortwave infrared

TES:

Tropospheric emission spectrometer

TIMS:

Thermal infrared multispectral scanner

TIR:

Thermal infrared

TIROS:

Television infrared observation satellites

TOMS:

Total ozone mapping spectrometer

TOVS:

TIROS operational vertical sounder

UV:

Ultraviolet

VAACs:

Volcanic ash advisory centres

VIIRS:

Visible/infrared imager/radiometer suite

VNIR:

Visible/near infrared

References

  • Abrams M (2000) The advanced spaceborne thermal emission and reflection radiometer (ASTER): data products for the high spatial resolution imager on NASA’s Terra platform. Int J Remote Sens 21(5):847–859

    Article  Google Scholar 

  • Ackerman SA, Schreiner AJ, Schmit TJ, Woolf HM, Li J, Pavolonis M (2008) Using the GOES Sounder to monitor upper level SO2 from volcanic eruptions. J Geophys Res 113(D14S11)

  • Afe OT, Richter A, Sierk B, Wittrock F, Burrows JP (2004) BrO emission from volcanoes: a survey using GOME and SCIAMACHY measurements. Geophys Res Lett 31(L24113)

  • Ahmad SP, Levelt PF, Bhartia PK, Hilsenrath E, Leppelmeier GW, Johnson JE (2003) Atmospheric products from the ozone monitoring instrument (OMI). Earth Obs Syst Viii 5151:619–630

    Google Scholar 

  • Aminou DMA (2002) MSG’s SEVIRI Instrument, ESA Bulletin, 111, August 2002. Available online at: www.esa.int/esapub/bulletin/bullet111/chapter4_bul111.pdf

  • ASTER Science Office (2009) ASTER SWIR Data Status Report, 13 March 2009. Available online at: http://www.science.aster.ersdac.or.jp/en/about_aster/swir_en.pdf

  • Beer R, Worden H (2003) The EOS aura tropospheric emission spectrometer (TES). Jet Propulsion Laboratory, California Institute of Technology, Pasadena

    Google Scholar 

  • Blumstein D, Turquety S, Hurtmans D, Clerbaux C, Hadji-Lazaro J, Bey I, Auvray M, Coheur P-F (2004) IASI instrument: technical overview and measured performances. Proceedings-SPIE the International Society for Optical Engineering, Denver, 2004, 5522–5543

  • Bluth GJS, Casadevall TJ, Schnetzler CC, Doiron SD, Walter LS, Krueger AJ, Badruddin M (1994) Evaluation of sulfur dioxide emissions from explosive volcanism: the 1982–1983 eruptions of Galunggung, Java, Indonesia. J Volcanol Geotherm Res 63:243–256

    Article  Google Scholar 

  • Bovensmann H (1999) SCIAMACHY—mission objectives and measurement modes. J Atmos Sci 56(2):127–150

    Article  Google Scholar 

  • Bramstedt K, Richter A, van Roozendael M, de Smedt I (2004) Comparisons of SCIAMACHY sulfur dioxide observations. Proceedings of the Second Workshop on the Atmospheric Chemistry Validation of ENVISAT (ACVE-1)

  • Burrows J, Weber M, Buchwitz M, Rozanov V, Ladstäter-Weißenmayer A, Richter A, Debeek R, Hoogen R, Branstedt K, Eichmann K-U, Eisinger M, Perner D (1999) The global ozone monitoring experiment (GOME): mission concept and first scientific results. J Atmos Sci 56:151–175

    Article  Google Scholar 

  • Carn SA, Krueger AJ, Bluth GJS, Schaefer SJ, Krotkov NA, Watson IM, Datta S (2003) Volcanic eruption detection by the Total Ozone Mapping Spectrometer (TOMS) instruments: a 22-year record of sulfur dioxide and ash emissions. In: Oppenheimer C, Pyle DM, Barclay J (eds) Volcanic Degassing. Geological Society, London, Special Publications, 213, pp 177–202

  • Carn SA, Strow LL, de Souza-Machado S, Edmonds Y, Hannon S (2005) Quantifying tropospheric volcanic emissions with AIRS: the 2002 eruption of Mt. Etna (Italy). Geophys Res Lett 32(2)

  • Carn SA, Krotkov NA, Yang K, Hoff RM, Prata AJ, Krueger AJ (2007) Extended observations of volcanic SO2 and sulfate aerosol in the stratosphere. Atom Chem Phys Discuss 7:2857–2871

    Article  Google Scholar 

  • Carn SA, Krueger AJ, Krotkov NA, Arellano S, Yang K (2008a) Daily monitoring of Ecuadorian volcanic degassing from space. J Volcanol Geotherm Res 176(1):141–150

    Article  Google Scholar 

  • Carn SA, Prata AJ, Karlsdottir S (2008b) Circumpolar transport of a volcanic cloud from Hekla (Iceland). J Geophys Res Atmos 113(D14)

  • Casadevall TL (1994) The 1989–1990 eruption of Redoubt volcano, Alaska: impacts on aircraft operations. J Volcanol Geotherm Res 62:301–316

    Article  Google Scholar 

  • Chahine MT, Pagano TS, Aumann HH, Atlas R, Barnet C, Blaisdell J, Chen L, Divakarla M, Fetzer EJ, Goldberg M, Gautier C, Granger S, Hannon S, Irion FW, Kakar R, Kalnay E, Lambrigtsen BH, Lee S, Marshall JL, McMillan WW, McMillin L, Olsen ET, Revercomb H, Rosenkranz P, Smith WL, Staelin D, Strow LL, Susskind J, Tobin D, Wolf W, Zhou L (2005) Improving weather forecasting and providing new data on greenhouse gases. Bull Am Meteorol Soc 87(7):911–926

    Article  Google Scholar 

  • Clarisse L, Coheur PF, Prata AJ, Hurtmans D, Razavi A, Phulpin T, Hadji-Lazaro J, Clerbaux C (2008) Tracking and quantifying volcanic SO2 with IASI, the September 2007 eruption at Jebel at Tair. Atmos Chem Phys Discuss 8:16917–16949

    Article  Google Scholar 

  • Clerbaux C, Coheur PF, Clarisse L, Hadji-Lazaro J, Hurtmans D, Turquety S, Bowman K, Worden H, Carn SA (2008) Measurements of SO2 profiles in volcanic plumes from the NASA Tropospheric Emission Spectrometer (TES). Geophys Res Lett 35(22)

  • Corradini S, Merucci L, Prata AJ, Silvestri M, Musacchio M, Spinetti C, Piscini A, Buongiorno MF (2008) SO2 and ash plume retrievals using MSG-SEVIRI measurements. Test case: 24 November 2006 Mt. Etna eruption. Proceedings of the 2008 second workshop on use of Remote Sensing Techniques for Monitoring Volcanoes and Seismogenic Areas, USEReST 2008, 11–14 Nov 2008, Naples, Italy, IEEE Publication

  • Dean K, Dehn J, Engle K, Izbekov P, Papp K, Patrick M (2002) Satellite monitoring of volcanoes at the Alaska Volcano observatory. Adv Environ Monit Model 1(1):3–35

    Google Scholar 

  • Delmelle P (2003) Environmental impacts of tropospheric volcanic gas plumes. Geological society, London. Special Publ 213(1):381–399

    Article  Google Scholar 

  • Delmelle P, Stix J, Baxter P, Garcia-Alvarez J, Barquero J (2002) Atmospheric dispersion, environmental effect and potential health hazards associated with the low-altitude gas plume of Masaya volcano, Nicaragua. Bull Volcanol 64:423–434

    Article  Google Scholar 

  • Duffell HJ, Oppenheimer C, Pyle DM, Galle B, McGonigle AJS, Burton MR (2003) Changes in gas composition prior to a minor explosive eruption at Masaya volcano, Nicaragua. J Volcanol Geotherm Res 126(3–4):327–339

    Article  Google Scholar 

  • Eckhardt S, Prata AJ, Stohl A, Richter A, Buongiorno F, Seibert P, Zehner C (2009) Support for aviation for volcanic ash avoidance: SAVAA. European Geophysical Union General Assembly, Vienna

    Google Scholar 

  • Eisinger M, Burrows JP (1998) Tropospheric sulfur dioxide observed by the ERS-2 GOME instrument. Geophys Res Lett 25(22):4177–4180

    Article  Google Scholar 

  • Ellrod GP (2004) Impact on volcanic ash detection caused by the loss of the 12.0 μm “Split Window” band on GOES Imagers. J Volcanol Geotherm Res 135(1–2):91–103

    Article  Google Scholar 

  • Ellrod GP, Connell BH, Hillger DW (2003) Improved detection of airborne volcanic ash using multispectral infrared satellite data. J Geophys Res 108 (D12)

  • EUMETSAT (2008) AVHRR Level 1b Products Guide, Issue: v2D, 29 August 2008, Available online at: http://oiswww.eumetsat.org/WEBOPS/eps-pg/AVHRR/AVHRR-PG-0TOC.htm

  • EUMETSAT (2009) GOME-2 Products Guide, Issue: v2D, 6 March 2009, Available online at: http://oiswww.eumetsat.org/WEBOPS/eps-pg/GOME-2/GOME2-PG-0TOC.htm

  • Filizzola C, Lacava T, Marchese F, Pergola N, Scaffidi I, Tramutoli V (2007) Assessing RAT (Robust AVHRR Technique) performances for volcanic ash cloud detection and monitoring in near real-time: the 2002 eruption of Mt. Etna (Italy). Remote Sens Environ 107:440–454

    Article  Google Scholar 

  • Francis P, Rothery D (2000) Remote sensing of active volcanoes. Annu Rev Earth Planet Sci 28:81–106

    Article  Google Scholar 

  • Friedman JD, Heiken G, Randerson D, McKay DS (1976) Observations of eruption clouds from Sakura-jima Volcano, Kyushu, Japan from Skylab 4. J Volcanol Geotherm Res 4:305–329

    Article  Google Scholar 

  • Goddard Space Flight Center (2005) GOES-N,O,P—the next generation, NP-2005-4-694-GSFC. Available online at: www.goes.gsfc.nasa.gov/text/brochure/GOES_NOP_web.pdf

  • Harris AJL, Pilger E, Flynn LP, Garbeil H, Mouginis-Mark PJ, Kauahikaua J, Thornber C (2001) Automated, high temporal resolution, thermal analysis of Kilauea volcano, Hawai`i, using GOES satellite data. Int J Remote Sens 22(6):945–967

    Article  Google Scholar 

  • Henney LA, Watson IM, Realmuto VJ (2009) The use of ASTER to detect volcanic sulfur dioxide emissions from Fuego and Pacaya volcanoes, Guatemala. Remote Sens Environ (in review)

  • Hilliger DW, Clark JD (2002) Principal component image analysis of MODIS for volcanic ash. Part I: most important bands and implications for future GOES imagers. J Appl Meteorol 41:985–1001

    Google Scholar 

  • Hufford G, Simpson JJ, Salinas L, Barske E, Pieri DC (2000) Operational considerations of volcanic ash for airlines. Bull Am Meteorol Soc 22(6):945–967

    Google Scholar 

  • Joiner J, Bhartia PK (1997) Accurate determination of total ozone using SBUV continuous spectral scan measurements. J Geophys Res 102(D11):12957–12969

    Article  Google Scholar 

  • Jucks K (2009) Active sensing of CO2 emissions over nights, days and seasons—study activity/plans. Earth Science Decedal Survey Mission Symposium, Washington, DC. 11–12 February, 2009. Available online at: http://decadal.gsfc.nasa.gov/documents/10_ASCENDS.pdf

  • Jucks K, Bontempi P (2009) GEO-CAPE: geostationary coastal ocean and air pollution events, Decadal Survey Symposium, 11 Feb 2009. Available online at: http://decadal.gsfc.nasa.gov/documents/11_GEOCAPE.pdf

  • Kearney C, Watson IM (2009) An ash correction for the 8.6 micron SO2 retrieval. J Geophys Res (in press). doi:10.1029/2008JD011407

  • Kearney CS, Dean K, Realmuto VJ, Watson IM, Dehn J, Prata F (2008) Observations of SO2 production and transport from Bezymianny volcano, Kamchatka using the MODerate resolution Infrared Spectroradiometer (MODIS). Int J Remote Sens 29(22):6647–6665

    Article  Google Scholar 

  • Kearney C, Watson IM, Bluth GJS, Carn SA, Realmuto VJ (2009). A comparison of thermal infrared and ultraviolet retrievals of SO2 in the cloud produced by the 2003 Al-Mishaq state sufur plant fire. Geophys Res Lett 36(L10807)

  • Kerr JB, Mc Elroy CT, Olafson RA (1980) Measurements of ozone with the brewer ozone spectrophotometer. Proc Int Ozone Symp 1:74–79

    Google Scholar 

  • Khokhar MF, Frankenberg C, Van Roozendael M, Beirle S, Kuhl S, Richter A, Platt U, Wagner T (2005) Satellite observations of atmospheric SO2 from volcanic eruptions during the time-period of 1996–2002. In: Atmospheric Remote Sensing: Earth's Surface, Troposphere, Stratosphere and Mesosphere- I. Adv Space Res 36(5):879–887

  • King MD., Kaufman YJ, Menzel WP, Tanré D (1992) Remote sensing of cloud, aerosol, and water vapor properties from the moderate resolution imaging spectrometer (MODIS). IEEE Trans Geosci Remote Sens 30(1)

  • Kinoshita K, Kanagaki C, Iino N, Koyamada M, Terada A, Tupper A (2002) Volcanic plumes at Miyakejima observed from satellites and from the ground. Proc SPIE, 4891, Hangzhou, China, 25–27 October, 2002

  • Krotkov NA, Krueger AJ, Bhartia PK (1997) Ultraviolet optical model of volcanic clouds for remote sensing of ash and sulfur dioxide. J Geophys Res Atmos 102(D18):21891–21904

    Article  Google Scholar 

  • Krotkov NA, Torres O, Seftor C, Krueger AJ, Kostinski A, Rose WI, Bluth GJS, Schneider D, Schaefer SJ (1999) Comparison of TOMS and AVHRR volcanic ash retrievals from the August 1992 eruption of Mt. Spurr. Geophys Res Lett 26(4):455–458

    Article  Google Scholar 

  • Krotkov NA, Carn SA, Krueger AJ, Bhartia PK, Yang K (2006) Band residual difference algorithm for retrieval of SO2 from the aura Ozone Monitoring Instrument (OMI). IEEE Trans Geosci Remote Sens 44(5):1259–1266

    Article  Google Scholar 

  • Krueger A (1983) Sighting of El Chichon sulfur dioxide clouds with the Nimbus 7 Total Ozone Mapping Spectrometer. Science 220:1377–1378

    Article  Google Scholar 

  • Krueger AJ, Schaefer SJ, Krotkov N, Bluth G, Barker S (2000) Ultraviolet remote sensing of volcanic emissions. Remote Sens Active Volcanism 116:25–43

    Google Scholar 

  • Krueger AJ, Walter LS, Bhartia PK, Schnetzler CC, Krotkov NA, Sprod I, Bluth GJS (1995) Volcanic sulfur dioxide measurements from the total ozone mapping spectrometer (TOMS) instruments. J Geophys Res 100:14057–14076

    Article  Google Scholar 

  • Lee C, Richter A, Weber M, Burrows JP (2008) SO2 Retrieval from SCIAMACHY using the Weighting Function DOAS (WFDOAS) technique: comparison with standard DOAS retrieval. Atmos Chem Phys 8:6137–6145

    Article  Google Scholar 

  • Levelt PF, van den Oord GHJ, Dobber MR, Mälkki A, Visser H, de Vries J, Stammes P, Lundell JOV, Saari H (2006) The ozone monitoring instrument. Geoscience and remote sensing. IEEE Trans 44(5):1093–1101

    Google Scholar 

  • Livesey NJ, Wu DL (1999) EOS MLS retrieval process algorithm theoretical basis, version 1.1 October 15, 1999. JPL D-16159, EOS MLS DRL 601 (Part 3), ATBD-MLS-03. Available at: http://trs-new.jpl.nasa.gov/dspace/handle/2014/18503?mode=full

  • Livesey NJ, Snyder WV, Read WG, Wagner PA (2006) Retrieval algorithms for the EOS microwave limb sounder (MLS) instrument. 44, 5,1144-1155

  • Loyola D, van Geffen J, Valks P, Erbertseder T, van Roozendael M, Thomas W, Zimmer W, Wißkirchen K (2008) Satellite-based detection of volcanic sulphur dioxide from recent eruptions in Central and South America. Adv Geosci 14:35–40

    Article  Google Scholar 

  • Mather TA, Pyle DM, Oppenheimer C (2003) Tropospheric volcanic aerosol. Geophys Monogr 139:189–212

    Google Scholar 

  • McCarthy EB, Bluth GJS, Watson IM, Tupper A (2008) Detection and analysis of the volcanic clouds associated with the 18 and 28 August 2000 eruptions of Miyakejima volcano, Japan. Int J Remote Sens 29(22):6597–6620

    Article  Google Scholar 

  • McPeters RD (1971–1974) The atmospheric SO2 budget for Pinatubo derived from NOAA-11 SBUV/2 spectral data. Geophys Res Lett 20(18)

  • Miller TP, Casadevall TJ (2000) Volcanic ash hazards to aviation. Encyclopedia of volcanoes. H. Sigurdsson. Academic Press, San Diego, pp 915–930

    Google Scholar 

  • National Research Council (2007) Earth science and applications from space: national imperatives for the next decade and beyond. The National Academies Press, Washington, DC, USA

  • NOAA (2000) NOAA KLM user’s guide. Available online at http://www2.ncdc.noaa.gov/docs/intro.htm

  • NOAA[Online] (2009) Latest OMI/GOME SO2 Column 5 km—24 Hour Composite Images, NOAA Satellite and Information Service, National Environmental Satellite, Data and Information Service (NESDIS). Accessed on 15 Sept 2009 from http://satepsanone.nesdis.noaa.gov/pub/OMI/OMISO2/

  • Novak MAM, Watson IM, Delgado-Granados H, Rose WI, Cardenas-Gonzalez L, Realmuto VJ (2008) Volcanic emissions from Popocatepetl volcano, Mexico, quantified using moderate resolution imaging spectroradiometer (MODIS) infrared data: A case study of the December 2000–January 2001 emissions. J Volcanol Geotherm Res 170(1–2):76–85

    Google Scholar 

  • Oppenheimer C (1998) Volcanological applications of meteorological satellites. Int J Remote Sens 19:2829–2864

    Article  Google Scholar 

  • Pavolonis MJ, Feltz WF, Heidinger AK, Gallina GM (2006) A daytime complement to the reverse absorption technique for improved automated detection of volcanic ash. J Atmos Ocean Technol 23:1422–1444

    Article  Google Scholar 

  • Pergola N, Marchese F, Tramutoli V (2004) Automated detection of thermal features of active volcanoes by means of infrared AVHRR records. Remote Sens Environ 93(3):311–327

    Article  Google Scholar 

  • Pieri D, Abrams M (2004) ASTER watches the world’s volcanoes: a new paradigm for volcanological observations from orbit. J Volcanol Geotherm Res 135:13–28

    Article  Google Scholar 

  • Prata AJ (1989) Infrared radiative transfer calculations for volcanic ash clouds. Geophys Res Lett 16(11):1293–1296

    Article  Google Scholar 

  • Prata AJ (2008) Satellite detection of hazardous volcanic clouds and the risk to global air traffic. Nat Hazards. doi: 10.1007/s11069-008-9273-z

  • Prata AJ, Bernardo C (2007) Retrieval of volcanic SO2 column abundance from atmospheric infrared sounder data. J Geophys Res Atmos 112

  • Prata AJ, Kerkmann J (2007). Simultaneous retrieval of volcanic ash and SO2 using MSG-SEVIRI measurements. Geophys Res Lett 34(L05813)

  • Prata AJ, Bluth G, Rose WI, Schneider D, Tupper A (2001) Comments on failures in detecting volcanic ash from a satellite-based technique. Remote Sens Environ 78:341–346

    Article  Google Scholar 

  • Prata AJ, Rose WI, Self S, O’Brien DM (2003) Global, long-term sulphur dioxide measurements from the TOVS data: a new tool for studying explosive volcanism and climate. Geophys Monogr 139:75–92

    Google Scholar 

  • Prata AJ, Carn SA, Stohl A, Kerkmann J (2007) Long range transport and fate of a stratospheric volcanic cloud from Soufrière Hills volcano, Montserrat. Atmos Chem Phys 7:5093–5103

    Article  Google Scholar 

  • Ramsey MS, Dehn J (2004) Spaceborne observations of the 2000 Bezymianny, Kamchatka eruption: the integration of high-resolution ASTER data into near real-time monitoring using AVHRR. J Volcanol Geotherm Res 135(1–2):127–146

    Article  Google Scholar 

  • Ramsey MS, Flynn LP (2004) Strategies, insights, and the recent advances in volcanic monitoring and mapping with data from NASA’s Earth Observing System. J Volcanol Geotherm Res 135(1–2):1–11

    Article  Google Scholar 

  • Ramsey MS, Wessels R, Dehn J, Duda K, Harris A, Watson IM (2008) The NASA ASTER Urgent Request Program: the last eight plus years of monitoring Kamchatka’s volcanoes from space. Eos Trans AGU 89(53): Fall Meet. Suppl, Abstract V41E-04

  • Read WG, Froidevaux L, Waters JW (1993) Microwave limb sounder measurements of stratospheric SO2 from the Mt. Pinatubo Volcano. Geophys Res Lett 20, no. 12, 1299–1302

    Google Scholar 

  • Realmuto VJ (2000) The potential use of earth observing system data to monitor the passive emission of sulfur dioxide from volcanoes. Remote Sens Active Volcanism 116:101–115

    Google Scholar 

  • Realmuto VJ, Worden HM (2000) The impact of atmospheric water vapor on the thermal infrared remote sensing of volcanic sulfur dioxide emissions: a case study from the Pu’u ‘O’o vent of Kilauea Volcano, Hawaii. J Geophys Res 105:21497–21508

    Article  Google Scholar 

  • Realmuto VJ, Abrams MJ, Buongiorno MF, Pieri DC (1994) The use of multispectral thermal infrared image data to estimate the sulfur dioxide flux from volcanoes: a case study from Mount Etna, Sicily, July 29, 1986. J Geophys Res 99(B1):481–488

    Article  Google Scholar 

  • Realvolc Project [online] (2001) Near realtime monitoring of active volcanoes in East Asia using Satellite Data. Accessed on 26 Aug 2009 from http://vrsserv.eri.u-tokyo.ac.jp/REALVOLC/

  • Rix M, Valks P, Hao N, Erbertsederm T, van Geffen J (2008) Monitoring of volcanic SO2 emissions using the GOME-2 satellite instrument, Proceedings of the 2008 second workshop on use of Remote Sensing Techniques for Monitoring Volcanoes and Seismogenic Areas, USEReST 2008, 11–14 Nov 2008. IEEE Publication, Naples

    Google Scholar 

  • Robock A (2000) Volcanic eruptions and climate. Rev Geophys 38(2):191–219

    Article  Google Scholar 

  • Rose WI, Delene DJ, Schnelder DJ, Bluth GJS, Krueger AJ, Sprod I, McKee C, Davies HL, Ernst GGJ (1995) Ice in the 1994 Rabaul eruption cloud—implications for volcano hazard and atmospheric effects. Nature 375:477–479

    Article  Google Scholar 

  • SACS[Online] (2009) SO2 data and alert service. Retrieved 20 May 2009 from http://sacs.aeronomie.be/

  • Sandford S (2009) CLARREO Mission Formulation, 2009 Decadal Survey Symposium, 11–12 Feb 2009, Available online at http://decadal.gsfc.nasa.gov/documents/05_CLARREO.pdf

  • Schmit TJ, Gunshor MM, Menzel WP, Gurka JJ, Li J, Bachmeier AS (2005) Introducting the next generation advanced baseline imager on GOES-R. Am Meteorol Soc 2005:1079–1096

    Article  Google Scholar 

  • Schneider DJ, Rose WI, Kelley L (1995) Tracking of 1992 Eruption Clouds from Crater Peak Vent of Mount Spurr Volcano, Alaska, Using AVHRR. US Geol Survey Bull 2139:27–36

    Google Scholar 

  • Schneider DJ, Bailey J, Dehn J (2008). Satellite-based detection and tracking of volcanic ash clouds from the 2008 eruptions of Okmok and Kasatochi volcanoes, Alaska, Eos Trans. AGU, 89(53), Fall Meet. Suppl., Abstract A51 J-06, 15–19 December, San Francisco, California, USA

  • Seftor CJ, Hsu NC, Herman JR, Bhartia PK, Torres O, Rose WI, Schneider DJ, Krotkov N (1997) Detection of volcanic ash clouds from Nimbus 7/total ozone mapping spectrometer. J Geophys Res Atmos 102(D14):16749–16759

    Article  Google Scholar 

  • Shibata T, Kouketsu T (2008) Volcanic clouds from the 2007 Eruption of Jebel at Tair (Yemen) detected by ground based and space borne lidar. SOLA 4:93–96

    Article  Google Scholar 

  • Simpson JJ, Hufford G, Pieri D, Jared B (2000) Failures in detecting volcanic ash from a satellite-based technique. Remote Sens Environ 72(2):191–217

    Article  Google Scholar 

  • Sparks RSJ (2003) Forecasting volcanic eruptions. Earth Planet Sci Lett Front Earth Sci Ser 210:1–15

    Article  Google Scholar 

  • Spinetti C, Carrere V, Buongiorno MF, Sutton AJ, Elias T (2008) Carbon dioxide of Pu`u`O`o volcanic plume at Kilauea retrieved by AVIRIS hyperspectral data. Remote Sens Environ 112(6):3192–3199

    Article  Google Scholar 

  • Stix J, Gaonac’h H (2000) Gas, plume and thermal monitoring. In: Sigurdsson H (ed) Encyclopaedia of volcanoes. Academic Press, New York, pp 1141–1163

    Google Scholar 

  • Strow LL, Hannon SE, De Souza-Machado S, Motteler HE, Tobin D (2003) An overview of the AIRS radiative transfer model. IEEE Trans Geosci Remote Sens 41(2):303–313

    Article  Google Scholar 

  • Sutton AJ, Elias T, Gerlach TM, Stokes JB (2001) Implications for eruptive processes as indicated by sulfur dioxide emissions from Kilauea Volcano, Hawai`i, 1979–1997. J Volcanol Geotherm Res 108(1–4):283–302

    Article  Google Scholar 

  • Tampellini L, Ratti R, Borgström S, Seifert FM, Solaro G (2009) Globvolcano: earth observation services for global monitoring of active volcanoes. European Geophysical Union, General Assembly, Vienna

    Google Scholar 

  • Theys N, Van Roozendael M, Dils B, Hendrick F, Hao N, De Mazière M (2009) First satellite detection of volcanic bromine monoxide emission after the Kasatochi eruption. Geophys Res Lett 36:L03809

    Article  Google Scholar 

  • Thomas HE, Watson IM, Kearney C, Carn SA, Murray SJ (2009) A multi-sensor comparison of sulphur dioxide emissions from the 2005 eruption of Sierra Negra volcano, Galápagos Islands. Remote Sens Environ 113(6):1331–1342

    Article  Google Scholar 

  • Tokuno M (2000) MTSAT window channels’ (IR1 and IR2) potential for distinguishing volcanic ash clouds. Meteorol Satell Cent Tech Note 39:1–10

    Google Scholar 

  • Tupper A, Carn S, Davey J, Kamada Y, Potts R, Prata F, Tokuno M (2004) An evaluation of volcanic cloud detection techniques during recent significant eruptions in the western ‘Ring of Fire’. Remote Sens Environ 91(1):27–46

    Article  Google Scholar 

  • Urai M (2004) Sulfur dioxide flux estimation from volcanoes using advanced spaceborne thermal emission and reflection radiometer—a case study of Miyakejima volcano, Japan. J Volcanol Geotherm Res 134(1–2):1–13

    Article  Google Scholar 

  • Waters JW, Froidevaux L, Harwood RS et al (2006) The earth observing system microwave limb sounder (EOS MLS) on the Aura satellite. IEEE T Geosci Remote 44(5):1075–1092

    Article  Google Scholar 

  • Watson IM, Realmuto VJ, Rose WI, Prata AJ, Bluth GJS, Gu Y, Bader CE, Yu T (2004) Thermal infrared remote sensing of volcanic emissions using the moderate resolution imaging spectroradiometer. J Volcanol Geotherm Res 135(1–2):75–89

    Article  Google Scholar 

  • Webley PW, Wooster MJ, Strauch W, Saballos JA, Dill K, Stephenson P, Stephenson J, Escobar Wolf R, Matias O (2008) Experiences from real-time satellite-based volcano Monitoring in Central America: case studies at Fuego, Guatemala. Int J Remote Sens 29(22):6618–6644

    Article  Google Scholar 

  • Webley PW, Dehn J, Lovick J, Dean KG, Bailey JE, Valcic L (2009) Near real time volcanic ash cloud detection: experiences from the Alaska Volcano Observatory. J Volcanol Geotherm Res 186 (1–2) Improved prediction and tracking of volcanic ash clouds, 30 September, 2009, pp 79–90

  • Wen S, Rose WI (1994) Retrieval of sizes and total masses of particles in volcanic clouds using AVHRR bands 4 and 5. J Geophys Res 99:5421–5431

    Article  Google Scholar 

  • Winkler DM, Hunt WH, McGill MJ (2007) Initial performance assessment of CALIOP. Geophys Res Lett 34(L19803)

  • Wright R, Realmuto VJ (2009) CQ3. Volcanoes, Hyspiri Mission Study Science Question #3. Available online at: http://hyspiri.jpl.nasa.gov/downloads/public/CQ3-Wright-20090127.pdf

  • Yamaguchi Y, Kahle A, Tsu T, Kawakami T, Pniel M (1998) Overview of advanced spaceborne thermal emission and reflection radiometer (ASTER). IEEE Trans Geosci Remote Sens 36:1062–1071

    Article  Google Scholar 

  • Yang K, Krotkov NA, Krueger AJ, Carn SA, Bhartia PK, Levelt PF (2007) Retrieval of large volcanic SO2 columns from the Aura ozone monitoring instrument: comparison and limitations. J Geophys Res Atmos 112(D24)

  • Yu T-X, Rose WI (2000) Retrieval of sulfate and silicate ash masses in young (1 to 4 days old) eruption clouds using multiband infrared HIRS/2 data. In: Mouginis-Mark PJ, Crisp JA, Fink JH (eds) Remote sensing of active volcanism. Geophysical Monograph 116, AGU, Washington, DC, pp 87–110

  • Yu T, Rose WI, Prata AJ (2002) Atmospheric correction for satellite-based volcanic ash mapping and retrievals using “split-window” IR data from GOES and AVHRR. J Geophys Res 107(D16)

Download references

Acknowledgments

The authors would like to acknowledge an anonymous reviewer, M. Ramsey and P. Webley for their extremely thorough reviews and S. Murray for proof-reading, all of which have significantly improved this manuscript. The funding for the project was provided by NASA grant NNX08AF80G.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. E. Thomas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thomas, H.E., Watson, I.M. Observations of volcanic emissions from space: current and future perspectives. Nat Hazards 54, 323–354 (2010). https://doi.org/10.1007/s11069-009-9471-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11069-009-9471-3

Keywords

Navigation