Skip to main content
Log in

Implementation of reconstructed geomorphologic units in landslide susceptibility mapping: the Melen Gorge (NW Turkey)

  • Original Paper
  • Published:
Natural Hazards Aims and scope Submit manuscript

Abstract

In the international literature, although considerable amount of publications on the landslide susceptibility mapping exist, geomorphology as a conditioning factor is still used in limited number of studies. Considering this factor, the purpose of this article paper is to implement the geomorphologic parameters derived by reconstructed topography in landslide susceptibility mapping. According to the method employed in this study, terrain is generalized by the contours passed through the convex slopes of the valleys that were formed by fluvial erosion. Therefore, slope conditions before landsliding can be obtained. The reconstructed morphometric and geomorphologic units are taken into account as a conditioning parameter when assessing landslide susceptibility. Two different data, one of which is obtained from the reconstructed DEM, have been employed to produce two landslide susceptibility maps. The binary logistic regression is used to develop landslide susceptibility maps for the Melen Gorge in the Northwestern part of Turkey. Due to the high correct classification percentages and spatial effectiveness of the maps, the landslide susceptibility map comprised the reconstructed morphometric parameters exhibits a better performance than the other. Five different datasets are selected randomly to apply proper sampling strategy for training. As a consequence of the analyses, the most proper outcomes are obtained from the dataset of the reconstructed topographical parameters and geomorphologic units, and lithological variables that are implemented together. Correct classification percentage and root mean square error (RMSE) values of the validation dataset are calculated as 86.28% and 0.35, respectively. Prediction capacity of the different datasets reveal that the landslide susceptibility map obtained from the reconstructed parameters has a higher prediction capacity than the other. Moreover, the landslide susceptibility map obtained from the reconstructed parameters produces logical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • AIGM (1995) Duzce Ili Dokuzdegirmen Koyu Jeolojik Etut Raporu. Afet Isleri Genel Mudurlugu (in Turkish, unpublished)

  • Atkinson PM, Massari R (1998) Generalized linear modeling of susceptibility to land sliding in the Central Apennines, Italy. Comput Geosci 24(4):373–385

    Article  Google Scholar 

  • Ayalew L, Yamagishi H (2005) The application of GIS-based logistic regression for landslide susceptibility mapping in the Kakuda–Yahiko Mountains, central Japan. Geomorphology 65:15–31

    Article  Google Scholar 

  • Barka AA (1992) The North Anatolian fault. Annales Tectonicae 6:174–195

    Google Scholar 

  • Barka AA, Kadinsky-Cade K (1988) Strike-slip fault geometry in Turkey and its influence on earthquake activity. Tectonics 7:663–684

    Google Scholar 

  • Biggerstaff BJ (2000) Comparing diagnostic tests: a simple graphic using likelihood ratios. Stat Med 19(5):649–663

    Article  Google Scholar 

  • Can T, Nefeslioglu HA, Gokceoglu C, Sonmez H, Duman TY (2005) Susceptibility assessments of shallow earthflows triggered by heavy rainfall at three sub catchments by logistic regression analyses. Geomorphology 72:250–271

    Article  Google Scholar 

  • Carrara A (1983) Multivariate models for landslide hazard evaluation. Math Geol 15(3):403–427

    Article  Google Scholar 

  • Childs C (2004) Interpolatin surfaces in ArcGIS spatial analyst. ArcUser July–September, 32–36. Internet version available at http://www.esri.com

  • Chung CJ, Fabbri A, Van Westen CJ (1995) Multivariate regression analysis for landslide hazard zonation. In: Carrara A, Guzetti F (eds) Geographical information systems in assessing natural hazards. Kluwer, pp 107–133

  • Chung CJ, Fabbri AG (1999) Probabilistic prediction models for landslide hazard mapping. Photogramm Eng Remote Sens 65(12):1389–1399

    Google Scholar 

  • Clerici A, Perego S, Tellini C, Vescovi P (2002) A procedure for landslide susceptibility zonation by the conditional analysis method. Geomorphology 48:349–364

    Article  Google Scholar 

  • Clerici A, Perego S, Tellini C, Vescovi P (2006) A GIS-based automated procedure for landslide susceptibility mapping by the Conditional Analysis method: the Baganza valley case study (Italian Northern Apennines). Environ Geol 50(7):941–961

    Article  Google Scholar 

  • Cruden DM, Varnes DJ (1996) Landslide types and processes. In: Turner AK, Schuster RL (eds) Landslides: investigation and mitigation. National Academy Press, pp 36–75

  • Dietrich WE, Bellugi GD, Sklar LS, Stock JD (2003) Geomorphic transport laws for predicting landscape form and dynamics. In: Prediction in geomorphology geophysical monograph, vol 135, pp 1–30

  • Duman TY, Can T, Gokceoglu C, Nefeslioglu HA, Sonmez H (2006) Application of logistic regression for landslide susceptibility zoning of Cekmece Area, Istanbul, Turkey. Environ Geol 51:241–256

    Article  Google Scholar 

  • Emre O, Duman YT, Dogan A, Kecer M, Erkal T, Ozalp S, Yildirim N, Guner N (1999) Maden Tetkik Ve Arama Genel Mudurlugu 12 Kasım 1999 Duzce Depremi Saha Gozlemleri ve On Degerlendirme Raporu (16 Kasım 1999), MTA Raporu

  • Ercanoglu M, Gokceoglu C (2004) Use of fuzzy relations to produce landslide susceptibility map of a landslide prone area (West Black Sea Region, Turkey). Eng Geol 75(3/4):229–250

    Article  Google Scholar 

  • Gokasan E, Ustaomer T, Gazioglu C, Yasar YZ, Ozturk K, Tur H, Ecevitoglu B, Tok B (2003) Morpho-tectonic evolution of the Marmara Sea inferred from multi-beam bathymetric and seismic data. Geo-Mar Lett 23(1):19–33

    Article  Google Scholar 

  • Gokceoglu C, Aksoy H (1996) Landslide susceptibility mapping of the slopes in the residual soils of the Mengen region (Turkey) by deterministic stability analyses and image processing techniques. Eng Geol 44:147–161

    Article  Google Scholar 

  • Gokceoglu C, Sonmez H, Nefeslioglu HA, Duman TY, Can T (2005) The March 17, 2005 Kuzulu landslide (Sivas, Turkey) and landslide susceptibility map of its close vicinity. Eng Geol 81:65–83

    Article  Google Scholar 

  • Gorsevski PV, Gessler P, Foltz RB (2000) Spatial prediction of landslide hazard using logistic regression and Gz7. Conference on Integrating GIS and Environmental Modelling, Alberta, Canada, 9 pp

  • Guzzetti F, Carrara A, Cardinali M, Reichenbach P (1999) Landslide hazard evaluation: an aid to a sustainable development. Geomorphology 31:181–216

    Article  Google Scholar 

  • Guzzetti F, Reichenbach P, Cardinali M, Galli M, Ardizzone F (2005) Probabilistic landslide hazard assessment at the basin scale. Geomorphology 72(1–4):272–299

    Article  Google Scholar 

  • Guzzetti F, Reichenbach P, Ardizzone F, Cardinali M, Galli M (2006) Estimating the quality of landslide susceptibility models. Geomorphology 81(1–2):166–184

    Article  Google Scholar 

  • Ketin I (1948) Über die tektonisch-mechanischen Folgerungen aus den grossen Anatolischen Erdbeben des letzten Dezenniums. Geol Rundsch 36:77–83

    Article  Google Scholar 

  • Ketin I (1955) Akcakoca-Duzce bolgesinin jeolojik lovesi hakkinda memuar (1/100000 olcekli Eregli 22/3 ve Kismen Bolu 39/1 Paftalarinin Jeolojik Loveleri). MTA Enst Rap No: 2277

  • Lee S (2004) Application of likelihood ratio and logistic regression models to landslide susceptibility mapping using GIS. Environ Manage 34(2):223–232

    Article  Google Scholar 

  • Lee S (2005) Application of logistic regression model and its validation for landslide susceptibility mapping using GIS and remote sensing data. Int J Remote Sens 26(7):1477–1491

    Article  Google Scholar 

  • Lee S, Min K (2001) Statistical analysis of landslide susceptibility at Yongin, Korea. Environ Geol 40:1095–1113

    Article  Google Scholar 

  • Lee S, Pradhan B (2007) Landslide hazard mapping at Selangor, Malaysia using frequency ratio and logistic regression models. Landslides 4(1):33–41

    Article  Google Scholar 

  • Lee S, Ryu JH, Min K, Won JS (2003a) Landslide susceptibility analysis using GIS and artificial neural network. Earth Surf Process Landf 28:1361–1376

    Article  Google Scholar 

  • Lee S, Ryu JH, Lee MJ, Won JS (2003b) Use of an artificial neural network for analysis of the susceptibility to landslides at Boun, Korea. Environ Geol 44:820–833

    Article  Google Scholar 

  • Lee S, Ryu JH, Won JS, Park HJ (2004) Determination and application of the weights for landslide susceptibility mapping using an artificial neural network. Eng Geol 71:289–302

    Article  Google Scholar 

  • McCoy J, Johnston K (2001) Using ArcGIS spatial analyst. Esri Press New York, 280 pp

  • Menard S (1995) Applied logistic regression analysis. Sage University paper series on Quantitative applications in social sciences, vol 106, Thousand Oaks, California, 98 pp

  • Moore ID, Grayson RB, Ladson AR (1991) Digital terrain modeling: a review of hydrological, geomorphologic, and biological applications. Hydrol Process 5:3–30

    Article  Google Scholar 

  • Nefeslioglu HA, Duman TY, Durmaz S (2007) Landslide susceptibility mapping for a part of tectonic Kelkit Valley (Eastern Black Sea region of Turkey). Geomorphology 94:401–418

    Article  Google Scholar 

  • Ohlmacher CG, Davis CJ (2003) Using multiple regression and GIS technology to predict landslide hazard in northeast Kansas, USA. Eng Geol 69:331–343

    Article  Google Scholar 

  • Pekcan N (2000) Duzce-Akcakoca Bolgesinin Jeomorfolojisi. Filiz Kitabevi, Istanbul. 295 pp

    Google Scholar 

  • Popescu ME (1990) A suggested method for reporting a landslide. UNESCO Working Party on World Landslide Inventory (WP/WLI). Bull Int Assoc Eng Geol 41:5–12

    Article  Google Scholar 

  • Remondo J, Gonzalez-Diez A, De Teran JRD, Cendrero A (2003) Landslide susceptibility models utilizing spatial data analysis techniques. A case study from the Lower Deba Valley, Guipuzcoa (Spain). Nat Hazards 30(3):267–279

    Article  Google Scholar 

  • Saroglu F, Emre O, Boray A (1987) Turkiye’nin diri faylari ve depremsellikleri. MTA Raporu, Rapor no: 8174, Ankara

  • Sengor AMC (1979) The North Anatolian transform fault: its age, offset and tectonic significance. J Geol Soc Lond 136:269–282

    Article  Google Scholar 

  • Suzen ML, Doyuran V (2004a) Data driven bivariate landslide susceptibility assessment using geographical information systems: a method and application to Asarsuyu catchments, Turkey. Eng Geol 71:303–321

    Article  Google Scholar 

  • Suzen ML, Doyuran V (2004b) A comparison of the GIS based landslide susceptibility assessment methods: multivariate versus bivariate. Environ Geol 45:665–679

    Article  Google Scholar 

  • Swets JA (1988) Measuring the accuracy of diagnostic systems. Science 240:1285–1293

    Article  Google Scholar 

  • Van Westen CJ, Rengers N, Soeters R (2003) Use of geomorphologic information in indirect landslide susceptibility assessment. Nat Hazards 30(3):399–419

    Article  Google Scholar 

  • Varnes DJ (1978) Landslides types and processes. In: Eckel EB (ed) In: Landslides and engineering practice. Highway Research Board Spec Rep 29:20–47

  • Wilson JP, Gallant JC (2000) Terrain analysis principles and applications. John Wiley & Sons Inc, Canada, 479 pp

    Google Scholar 

  • Yesilnacar E, Topal T (2005) Landslide susceptibility mapping: a comparison of logistic regression and neural networks methods in a medium scale study, Hendek region (Turkey). Eng Geol 79:251–266

    Article  Google Scholar 

  • Zezere JL (2002) Landslide susceptibility assessment considering landslide typology. A case study in the area north of Lisbon (Portugal). Nat Hazards Earth Syst Sci 2:73–82

    Article  Google Scholar 

Download references

Acknowledgment

We would like to extend our cordial thanks to S. Cigdem Erdogan (Head of Elective Foreign Languages Department) for her contribution to the improvement of the language of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Gorum.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gorum, T., Gonencgil, B., Gokceoglu, C. et al. Implementation of reconstructed geomorphologic units in landslide susceptibility mapping: the Melen Gorge (NW Turkey). Nat Hazards 46, 323–351 (2008). https://doi.org/10.1007/s11069-007-9190-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11069-007-9190-6

Keywords

Navigation