Skip to main content
Log in

Interaction of olfactory ensheathing cells with astrocytes may be the key to repair of tract injuries in the spinal cord: The ‘pathway hypothesis’

  • Published:
Journal of Neurocytology

Abstract

Transplantation of cultured adult olfactory ensheathing cells has been shown to induce anatomical and functional repair of lesions of the adult rat spinal cord and spinal roots. Histological analysis of olfactory ensheathing cells, both in their normal location in the olfactory nerves and also after transplantation into spinal cord lesions, shows that they provide channels for the growth of regenerating nerve fibres. These channels have an outer, basal lamina-lined surface apposed by fibroblasts, and an inner, naked surface in contact with the nerve fibres. A crucial property of olfactory ensheathing cells, in which they differ from Schwann cells, is their superior ability to interact with astrocytes. When confronted with olfactory ensheathing cells the superficial astrocytic processes, which form the glial scar after lesions, change their configuration so that their outer pial surfaces are reflected in continuity with the outer surfaces of the olfactory ensheathing cells. The effect is to open a door into the central nervous system. We propose that this formation of a bridging pathway may be the crucial event by which transplanted olfactory ensheathing cells allow the innate growth capacity of severed adult axons to be translated into regeneration across a lesion so that functionally valuable connections can be established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • ANDERSON, D. K., BEATTIE, M., BLESCH, A., BRESNAHAN, J., BUNGE, M., DIETRICH, D., DIETZ, V., DOBKIN, B., FAWCETT, J., FEHLINGS, M., FISCHER, I., GROSSMAN, R., GUEST, J., HAGG, T., HALL, E. D., HOULE, J., KLEITMAN, N., MCDONALD, J., MURRAY, M., PRIVAT, A., REIER, P., STEEVES, J., STEWARD, O., TETZLAFF, W., TUSZYNSKI, M. H., WAXMAN, S. G., WHITTEMORE, S., WOLPAW, J., YOUNG, W. & ZHENG, B. (2005) Recommended guidelines for studies of human subjects with spinal cord injury. Spinal Cord 43, 453–458.

    Article  PubMed  CAS  Google Scholar 

  • BARBER, P. C. & RAISMAN, G. (1978) Replacement of receptor neurones after section of the vomeronasal nerves in the adult mouse. Brain Research 147, 297–313.

    Article  PubMed  CAS  Google Scholar 

  • BARNETT, S. C., ALEXANDER, C. L., IWASHITA, Y., GILSON, J. M., CROWTHER, J., CLARK, L., DUNN, L. T., PAPANASTASSIOU, V., KENNEDY, P. G. & FRANKLIN, R. J. (2000) Identification of a human olfactory ensheathing cell that can effect transplant-mediated remyelination of demyelinated CNS axons. Brain 123, 1581–1588.

    Article  PubMed  Google Scholar 

  • BARNETT, S. C. & CHANG, L. (2004) Olfactory ensheathing cells and CNS repair: going solo or in need of a friend? Trends in Neurosciences 27, 54–60.

    Article  PubMed  CAS  Google Scholar 

  • BLESCH, A., LU, P. & TUSZYNSKI, M. H. (2002) Neurotrophic factors, gene therapy, and neural stem cells for spinal cord repair. Brain Research Bulletin 57, 833–838.

    Article  PubMed  CAS  Google Scholar 

  • BOYD, J. G., DOUCETTE, R. & KAWAJA, M. D. (2005) Defining the role of olfactory ensheathing cells in facilitating axon remyelination following damage to the spinal cord. FASEB Journal. 19, 694–703.

    Article  PubMed  CAS  Google Scholar 

  • BUCK, L. B. (1996) Information coding in the vertebrate olfactory system. Annual Review of Neuroscience 19, 517–544.

    Article  PubMed  CAS  Google Scholar 

  • CAJAL, S. R. y. (1928) Degeneration and Regeneration of the Nervous System, pp. 1–769. Oxford: Oxford University Press.

    Google Scholar 

  • CAO, Q., XU, X. M., DEVRIES, W. H., ENZMANN, G. U., PING, P., TSOULFAS, P., WOOD, P. M., BUNGE, M. B. & WHITTEMORE, S. R. (2005) Functional recovery in traumatic spinal cord injury after transplantation of multineurotrophin-expressing glial-restricted precursor cells. Journal of Neuroscience 25, 6947–6957.

    Article  PubMed  CAS  Google Scholar 

  • DE CARLOS, J. A., LÓPEZ-MASCARAQUE, L. & VALVERDE, F. (1995) The telencephalic vesicles are innervated by olfactory placode-derived cells: A possible mechanism to induce neocortical development. Neuroscience 68, 1167–1178.

    Article  PubMed  Google Scholar 

  • DEVON, R. & DOUCETTE, R. (1992) Olfactory ensheathing cells myelinate dorsal root ganglion neurites. Brain Research 589, 175–179.

    Article  PubMed  CAS  Google Scholar 

  • FERON, F., PERRY, C., MCGRATH, J. J. & MACKAY-SIM, A. (1998) New techniques for biopsy and culture of human olfactory epithelial neurons. Archives of Otolaryngology-Head & Neck Surgery. 124,861–866.

    CAS  Google Scholar 

  • FIELD, P. M., LI, Y. & RAISMAN, G. (2003) Ensheathment of the olfactory nerves in the adult rat. Journal of Neurocytology 32, 317–324.

    Article  PubMed  Google Scholar 

  • FILBIN, M. T. (2003) Myelin-associated inhibitors of axonal regeneration in the adult mammalian CNS. Nature, Reviews Neuroscience 4, 703–713.

    Article  CAS  Google Scholar 

  • FRANKEL, H. L., HANCOCK, D. O., HYSLOP, G., MELZAK, J., MICHAELIS, L. S., UNGAR, G. H., VERNON, J. D. & WALSH, J. J. (1969) The value of postural reduction in the initial management of closed injuries of the spine with paraplegia and tetraplegia. I. Paraplegia 7, 179–192.

    PubMed  CAS  Google Scholar 

  • FRANKLIN, R. J. & BARNETT, S. C. (1997) Do olfactory glia have advantages over Schwann cells for CNS repair? Journal of Neuroscience Research 50, 665–672.

    Article  PubMed  CAS  Google Scholar 

  • FRANKLIN, R. J. M. & BLAKEMORE, W. F. (1993) Requirements for Schwann cell migration within CNS environments: A viewpoint. International Journal of Developmental Neuroscience 11, 641–649.

    Article  PubMed  CAS  Google Scholar 

  • GELLER, H. M. & FAWCETT, J. W. (2002) Building a bridge: Engineering spinal cord repair. Experimental Neurology 174, 125–136.

    Article  PubMed  Google Scholar 

  • GOMEZ, V. M., AVERILL, S., KING, V., YANG, Q., PEREZ, E. D., CHACON, S. C., WARD, R., NIETO-SAMPEDRO, M., PRIESTLEY, J. & TAYLOR, J. (2003) Transplantation of olfactory ensheathing cells fails to promote significant axonal regeneration from dorsal roots into the rat cervical cord. Journal of Neurocytology 32, 53–70.

    Article  PubMed  Google Scholar 

  • IMAIZUMI, T., LANGFORD, K. L., WAXMAN, S. G., GREER, C. A. & KOCSIS, J. D. (1998) Transplanted olfactory ensheathing cells remyelinate and enhance axonal conduction in the demyelinated dorsal columns of the rat spinal cord. Journal of Neuroscience 18, 6176–6185.

    PubMed  CAS  Google Scholar 

  • JANI, H. R. & RAISMAN, G. (2004) Ensheathing cell cultures from the olfactory bulb and mucosa. Glia 47, 130–137.

    Article  PubMed  Google Scholar 

  • KATO, T., HONMOU, O., UEDE, T., HASHI, K. & KOCSIS, J. D. (2000) Transplantation of human olfactory ensheathing cells elicits remyelination of demyelinated rat spinal cord. Glia 30, 209–218.

    Article  PubMed  CAS  Google Scholar 

  • KATOH, S. & El MASRY, W. S. (1995) Motor recovery of patients presenting with motor paralysis and sensory sparing following cervical spinal cord injuries. Paraplegia 33, 506–509.

    PubMed  CAS  Google Scholar 

  • KEYVAN-FOULADI, N., RAISMAN, G. & LI, Y. (2005) Transplanted Schwann cells are less effective than olfactory ensheathing cells for delayed repair of corticospinal tract lesions. Glia 51, 306–311.

    Article  PubMed  Google Scholar 

  • KEYVAN-FOULADI, N., RAISMAN, G. & LI, Y. (2003) Delayed repair of corticospinal tract lesions by transplantation of olfactory ensheathing cells in adult rats. Journal of Neuroscience 23, 9428–9434.

    PubMed  CAS  Google Scholar 

  • LAKATOS, A., FRANKLIN, R. J. M. & BARNETT, S. C. (2000) Olfactory ensheathing cells and Schwann cells differ in their in vitro interactions with astrocytes. Glia 32, 214–225.

    Article  PubMed  CAS  Google Scholar 

  • LEVINE, J. M., REYNOLDS, R. & FAWCETT, J. W. (2001) The oligodendrocyte precursor cell in health and disease. Trends in Neurosciences 24, 39–47.

    Article  PubMed  CAS  Google Scholar 

  • LI, Y., CARLSTEDT, T., BERTHOLD, C.-H. & RAISMAN, G. (2004) Interaction of transplanted olfactory-ensheathing cells and host astrocytic processes provides a bridge for axons to regenerate across the dorsal root entry zone. Experimental Neurology 188, 300–308.

    Article  PubMed  Google Scholar 

  • LI, Y., FIELD, P. M. & RAISMAN, G. (2005) Olfactory ensheathing cells and olfactory nerve fibroblasts maintain continuous open channels for regrowth of olfactory nerve fibres. Glia 52, 245–251.

    Article  PubMed  Google Scholar 

  • LI, Y., FIELD, P. M. & RAISMAN, G. (1999) Death of oligodendrocytes and microglial phagocytosis of myelin precede immigration of Schwann cells into the spinal cord. Journal of Neurocytology 28, 417–427.

    Article  PubMed  CAS  Google Scholar 

  • LI, Y., FIELD, P. M. & RAISMAN, G.(1998) Regeneration of adult rat corticospinal axons induced by transplanted olfactory ensheathing cells. Journal of Neuroscience 18, 10514–10524.

    PubMed  CAS  Google Scholar 

  • LI, Y. & RAISMAN, G. (1994) Schwann cells induce sprouting in motor and sensory axons in the adult rat spinal cord. Journal of Neuroscience 14, 4050–4063.

    PubMed  CAS  Google Scholar 

  • LI, Y. & RAISMAN, G. (1995) Sprouts from cut corticospinal axons persist in the presence of astrocytic scarring in long-term lesions of the adult rat spinal cord. Experimental Neurology 134, 102–111.

    Article  PubMed  CAS  Google Scholar 

  • LIU, P. H., WANG, Y. J. & TSENG, G. F. (2003) Close axonal injury of rubrospinal neurons induced transient perineuronal astrocytic and microglial reaction that coincided with their massive degeneration. Experimental Neurology 179, 111–126.

    Article  PubMed  Google Scholar 

  • LU, J., FÉRON, F., HO, S. H., MACKAY-SIM, A. & WAITE, P. M. E. (2001) Transplantation of nasal olfactory tissue promotes partial recovery in paraplegic adult rats. Brain Research 889, 344–357.

    Article  PubMed  CAS  Google Scholar 

  • MARIN-PADILLA, M. & AMIEVA B. M. R. (1989) Early neurogenesis of the mouse olfactory nerve: Golgi and electron microscopic studies. Journal of Comparative Neurology 288, 339–352.

    Article  PubMed  CAS  Google Scholar 

  • MENDOZA, A. S., BREIPOHL, W. & MIRAGALL, F. (1982) Cell migration from the chick olfactory placode: A light and electron microscopic study. Journal of Embryology and Experimental Morphology. 69, 47–59.

    PubMed  CAS  Google Scholar 

  • RAISMAN, G. (1985) Specialized neuroglial arrangement may explain the capacity of vomeronasal axons to reinnervate central neurons. Neuroscience 14, 237–254.

    Article  PubMed  CAS  Google Scholar 

  • RAISMAN, G. (1969) Neuronal plasticity in the septal nuclei of the adult rat. Brain Research 14, 25–48.

    Article  PubMed  CAS  Google Scholar 

  • RAISMAN, G. (2004) Does NO mean GO? Nature, Reviews Neuroscience 5, 157–161.

    Article  CAS  Google Scholar 

  • RAMÓN-CUETO, A., CORDERO, M. I., SANTOS-BENITO, F. F. & AVILA, J. (2000) Functional recovery of paraplegic rats and motor axon regeneration in their spinal cords by olfactory ensheathing glia. Neuron 25, 425–435.

    Article  PubMed  Google Scholar 

  • RAMÓN-CUETO, A. & NIETO-SAMPEDRO, M. (1994) Regeneration into the spinal cord of transected dorsal root axons is promoted by ensheathing glia transplants. Experimental Neurology 127, 232–244.

    Article  PubMed  Google Scholar 

  • RAMÓN-CUETO, A. & NIETO-SAMPEDRO, M. (1992) Glial cells from adult rat olfactory bulb: Immunocytochemical properties of pure cultures of ensheathing cells. Neuroscience 47, 213–220.

    Article  PubMed  Google Scholar 

  • RIDDELL, J. S., ENRIQUEZ-DENTON, M., TOFT, A., FAIRLESS, R. & BARNETT, S. C. (2004) Olfactory ensheathing cell grafts have minimal influence on regeneration at the dorsal root entry zone following rhizotomy. Glia 47, 150–167.

    Article  PubMed  Google Scholar 

  • RUITENBERG, M. J., PLANT, G. W., HAMERS, F. P., WORTEL, J., BLITS, B., DIJKHUIZEN, P. A., GISPEN, W. H., BOER, G. J. & VERHAAGEN, J. (2003) Ex vivo adenoviral vector-mediated neurotrophin gene transfer to olfactory ensheathing glia: effects on rubrospinal tract regeneration, lesion size, and functional recovery after implantation in the injured rat spinal cord. Journal of Neuroscience 23, 7045–7058.

    PubMed  CAS  Google Scholar 

  • SCHNELL, L. & SCHWAB, M. E. (1990) Axonal regeneration in the rat spinal cord produced by an antibody against myelin-associated neurite growth inhibitors. Nature 343, 269–272.

    Article  PubMed  CAS  Google Scholar 

  • SCHWOB, J. E., YOUNGENTOB, S. L., RING, G., IWEMA, C. L. & MEZZA, R. C. (1999) Reinnervation of the rat olfactory bulb after methyl bromide-induced lesion: timing and extent of reinnervation. Journal of Comparative Neurology 412, 439–457.

    Article  PubMed  CAS  Google Scholar 

  • SHEARER, M. C., NICLOU, S. P., BROWN, D., ASHER, R. A., HOLTMAAT, A. J., LEVINE, J. M., VERHAAGEN, J. & FAWCETT, J. W. (2003) The astrocyte/meningeal cell interface is a barrier to neurite outgrowth which can be overcome by manipulation of inhibitory molecules or axonal signalling pathways. Molecular and Cellular Neuroscience 24, 913–925.

    Article  PubMed  CAS  Google Scholar 

  • SILVER, J. & MILLER, J. H. (2004) Regeneration beyond the glial scar. Nature, Reviews Neuroscience 5, 146–156.

    Article  CAS  Google Scholar 

  • SMITH, P. M., LAKATOS, A., BARNETT, S. C., JEFFERY, N. D. & FRANKLIN, R. J. M. (2002) Cryopreserved cells isolated from the adult canine olfactory bulb are capable of extensive remyelination following transplantation into the adult rat CNS. Experimental Neurology 176, 402–406.

    Article  PubMed  CAS  Google Scholar 

  • SNOW, D. M., LEMMON, V., CARRINO, D. A., CAPLAN, A. I. & SILVER, J. (1990) Sulfated proteoglycans in astroglial barriers inhibit neurite outgrowth in vitro. Experimental Neurology 109,111–130.

    Article  PubMed  CAS  Google Scholar 

  • SUZUKI, M. & RAISMAN, G. (1992) The glial framework of central white matter tracts: Segmented rows of contiguous interfascicular oligodendrocytes and solitary astrocytes give rise to a continuous meshwork of transverse and longitudinal processes in the adult rat fimbria. Glia 6, 222–235.

    Article  PubMed  CAS  Google Scholar 

  • VALVERDE, F. & LOPEZ-MASCARAQUE, L.(1991) Neuroglial arrangements in the olfactory glomeruli of the hedgehog. Journal of Comparative Neurology 307, 658–674.

    Article  PubMed  CAS  Google Scholar 

  • VALVERDE, F., SANTACANA, M. & HEREDIA, M. (1992) Formation of an olfactory glomerulus: morphological aspects of development and organization. Neuroscience 49, 255–276.

    Article  PubMed  CAS  Google Scholar 

  • VIDAL-SANZ, M., BRAY, G. M., VILLEGAS-PEREZ, M. P., THANOS, S. & AGUAYO, A. J. (1987) Axonal regeneration and synapse formation in the superior colliculus by retinal ganglion cells in the adult rat. Journal of Neuroscience 7, 2894–2909.

    PubMed  CAS  Google Scholar 

  • WILLIAMS, S. K., FRANKLIN, R. J. & BARNETT, S. C. (2004) Response of olfactory ensheathing cells to the degeneration and regeneration of the peripheral olfactory system and the involvement of the neuregulins. Journal of Comparative Neurology 470, 50–62.

    Article  PubMed  CAS  Google Scholar 

  • WU, Y. P. & LING, E. A. (1998) Induction of microglial and astrocytic response in the adult rat lumbar spinal cord following middle cerebral artery occlusion. Experimental Brain Research 118, 235–242.

    Article  CAS  Google Scholar 

  • XU, X. M., CHEN, A., GUÉNARD, V., KLEITMAN, N. & BUNGE, M. B. (1997) Bridging Schwann cell transplants promote axonal regeneration from both the rostral and caudal stumps of transected adult rat spinal cord. Journal of Neurocytology 26, 1–16.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geoffrey Raisman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Y., Li, D. & Raisman, G. Interaction of olfactory ensheathing cells with astrocytes may be the key to repair of tract injuries in the spinal cord: The ‘pathway hypothesis’. J Neurocytol 34, 343–351 (2005). https://doi.org/10.1007/s11068-005-8361-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11068-005-8361-1

Keywords

Navigation