Skip to main content

Advertisement

Log in

Protective Effects of Glatiramer Acetate Against Paclitaxel-Induced Peripheral Neuropathy in Rats: A Role for Inflammatory Cytokines and Oxidative Stress

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Chemotherapy-induced peripheral neuropathy (CIPN) is a major challenge for cancer patients who undergo chemotherapy with paclitaxel. Therefore, finding effective therapies for CIPN is crucial. Glatiramer acetate is used to treat multiple sclerosis that exerts neuroprotective properties in various studies. We hypothesized that glatiramer acetate could also improve the paclitaxel-induced peripheral neuropathy. We used a rat model of paclitaxel (2 mg/kg/every other day for 7 doses)-induced peripheral neuropathy. Rats were treated with either different doses of glatiramer acetate (1, 2, 4 mg/kg/day) or its vehicle for 14 days in separate groups. The mechanical and thermal sensitivity of the rats by using the Von Frey test and the Hot Plate test, respectively, were assessed during the study. The levels of oxidative stress (malondialdehyde and superoxide dismutase), inflammatory markers (TNF-α, IL-10, NF-kB), and nerve damage (H&E and S100B staining) in the sciatic nerves of the rats were also measured at the end of study. Glatiramer acetate (2 and 4 mg/kg) exerted beneficial effects on thermal and mechanical allodynia tests. It also modulated the inflammatory response by reducing TNF-α and NF-κB levels, enhancing IL-10 production, and improving the oxidative stress status by lowering malondialdehyde and increasing superoxide dismutase activity in the sciatic nerve of the rats. Furthermore, glatiramer acetate enhanced nerve conduction velocity in all treatment groups. Histological analysis revealed that glatiramer acetate (2 and 4 mg/kg) prevented paclitaxel-induced damage to the nerve structure. These results suggest that glatiramer acetate can alleviate the peripheral neuropathy induced by paclitaxel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

Data will be available per appropriate request.

References

  1. Rowinsky E, Eisenhauer E, Chaudhry V, Arbuck S, Donehower R (1993) Clinical toxicities encountered with paclitaxel (Taxol). Semin Oncol 20:1–15

    CAS  PubMed  Google Scholar 

  2. Nowak AK, Wilcken NR, Stockler MR, Hamilton A, Ghersi D (2004) Systematic review of taxane-containing versus non-taxane-containing regimens for adjuvant and neoadjuvant treatment of early Breast cancer. Lancet Oncol 5:372–380

    Article  CAS  PubMed  Google Scholar 

  3. Greco FA (2001) Paclitaxel-based combination chemotherapy in advanced non-small cell Lung cancer. Lung Cancer 34:53–56

    Article  Google Scholar 

  4. Sousa-Pimenta M, Estevinho LM, Szopa A, Basit M, Khan K, Armaghan M, Ibrayeva M, Sönmez Gürer E, Calina D, Hano C, Sharifi-Rad J (2023) Chemotherapeutic properties and side-effects associated with the clinical practice of terpene alkaloids: paclitaxel, docetaxel, and cabazitaxel. Front Pharmacol 14:1157306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kale VP, Habib H, Chitren R, Patel M, Pramanik KC, Jonnalagadda SC, Challagundla K, Pandey MK (2021) Old drugs, new uses: Drug repurposing in hematological malignancies. Seminars in cancer biology. Elsevier, Amsterdam, pp 242–248

    Google Scholar 

  6. Flatters SJ, Bennett GJ (2006) Studies of peripheral sensory nerves in paclitaxel-induced painful peripheral neuropathy: evidence for mitochondrial dysfunction. Pain 122:245–257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Freilich RJ, Balmaceda C, Seidman AD, Rubin M, DeAngelis LM (1996) Motor neuropathy due to docetaxel and paclitaxel. Neurology 47:115–118

    Article  CAS  PubMed  Google Scholar 

  8. Klein I, Lehmann HC (2021) Pathomechanisms of Paclitaxel-Induced Peripheral Neuropathy. Toxics 9:229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Rivera E, Cianfrocca M (2015) Overview of neuropathy associated with taxanes for the treatment of metastatic Breast cancer. Cancer Chemother Pharmacol 75:659–670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Siau C, Xiao W, Bennett GJ (2006) Paclitaxel-and vincristine-evoked painful peripheral neuropathies: loss of epidermal innervation and activation of Langerhans cells. Exp Neurol 201:507–514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Conner J (2014) Glatiramer acetate and therapeutic peptide vaccines for multiple sclerosis. J Autoimmun Cell Responses 1:3

    Article  Google Scholar 

  12. Farina C, Weber MS, Meinl E, Wekerle H, Hohlfeld R (2005) Glatiramer acetate in multiple sclerosis: update on potential mechanisms of action. Lancet Neurol 4:567–575

    Article  CAS  PubMed  Google Scholar 

  13. Lalive PH, Neuhaus O, Benkhoucha M, Burger D, Hohlfeld R, Zamvil SS, Weber MS (2011) Glatiramer acetate in the treatment of multiple sclerosis: emerging concepts regarding its mechanism of action. CNS Drugs 25:401–414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Racke MK, Lovett-Racke AE, Karandikar NJ (2010) The mechanism of action of glatiramer acetate treatment in multiple sclerosis. Neurology 74:S25–S30

    Article  CAS  PubMed  Google Scholar 

  15. Neuhaus O, Farina C, Wekerle H, Hohlfeld R (2001) Mechanisms of action of glatiramer acetate in multiple sclerosis. Neurology 56:702–708

    Article  CAS  PubMed  Google Scholar 

  16. Luria S, Cohen A, Safran O, Firman S, Liebergall M (2013) Immune system augmentation by glatiramer acetate of peripheral nerve regeneration-crush versus transection models of rat sciatic nerve. J Reconstr Microsurg 29:495–500

    Article  PubMed  Google Scholar 

  17. Rabie M, Yanay N, Fellig Y, Konikov-Rozenman J, Nevo Y (2019) Improvement of motor conduction velocity in hereditary neuropathy of LAMA2-CMD dy(2J)/dy(2J) mouse model by glatiramer acetate. Clin Neurophysiol 130:1988–1994

    Article  PubMed  Google Scholar 

  18. Leger T, Grist J, D’Acquisto F, Clark AK, Malcangio M (2011) Glatiramer acetate attenuates neuropathic allodynia through modulation of adaptive immune cells. J Neuroimmunol 234:19–26

    Article  CAS  PubMed  Google Scholar 

  19. Scripture CD, Figg WD, Sparreboom A (2006) Peripheral neuropathy induced by paclitaxel: recent insights and future perspectives. Curr Neuropharmacol 4:165–172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Shi H, Chen M, Zheng C, Yinglin B, Zhu B (2023) Fecal microbiota transplantation alleviated Paclitaxel-Induced Peripheral Neuropathy by interfering with astrocytes and TLR4/p38MAPK pathway in rats. J pain Res 16:2419–2432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Afshari K, Dehdashtian A, Haddadi NS, Haj-Mirzaian A, Iranmehr A, Ebrahimi MA, Tavangar SM, Faghir-Ghanesefat H, Mohammadi F, Rahimi N, Javidan AN, Dehpour AR (2018) Anti-inflammatory effects of Metformin improve the neuropathic pain and locomotor activity in spinal cord injured rats: introduction of an alternative therapy. Spinal Cord 56:1032–1041

    Article  PubMed  Google Scholar 

  22. Amirkhanloo F, Karimi G, Yousefi-Manesh H, Abdollahi A, Roohbakhsh A, Dehpour AR (2020) The protective effect of modafinil on vincristine-induced peripheral neuropathy in rats: a possible role for TRPA1 receptors. Basic Clin Pharmacol Toxicol 127:405–418

    Article  CAS  PubMed  Google Scholar 

  23. Singh P, Kongara K, Harding D, Ward N, Dukkipati VSR, Johnson C, Chambers P (2018) Comparison of electroencephalographic changes in response to acute electrical and thermal stimuli with the tail flick and hot plate test in rats administered with opiorphin. BMC Neurol 18:43

    Article  PubMed  PubMed Central  Google Scholar 

  24. Pourmohammadi N, Alimoradi H, Mehr SE, Hassanzadeh G, Hadian MR, Sharifzadeh M, Bakhtiarian A, Dehpour AR (2012) Lithium attenuates peripheral neuropathy induced by paclitaxel in rats. Basic Clin Pharmacol Toxicol 110:231–237

    Article  CAS  PubMed  Google Scholar 

  25. Ja’afer FM, Hamdan FB, Mohammed FH (2006) Vincristine-induced neuropathy in rat: electrophysiological and histological study. Exp Brain Res 173:334–345

    Article  PubMed  Google Scholar 

  26. Iarlori C, Gambi D, Lugaresi A, Patruno A, Felaco M, Salvatore M, Speranza L, Reale M (2008) Reduction of free radicals in multiple sclerosis: effect of glatiramer acetate (Copaxone®). Multiple Scler J 14:739–748

    Article  CAS  Google Scholar 

  27. Higashino H, Niwa A, Satou T, Ohta Y, Hashimoto S, Tabuchi M, Ooshima K (2009) Immunohistochemical analysis of brain lesions using S100B and glial fibrillary acidic protein antibodies in arundic acid- (ONO-2506) treated stroke-prone spontaneously hypertensive rats. J Neural Transm 116:1209–1219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Rismanbaf A, Afshari K, Ghasemi M, Badripour A, Haj-Mirzaian A, Dehpour AR, Shafaroodi H (2022) Therapeutic effects of Azithromycin on spinal cord Injury in male Wistar rats: a role for inflammatory pathways. Journal of neurological Surgery part A. Cent Eur Neurosurg 83:411–419

    Article  Google Scholar 

  29. Buege JA, Aust SD (1978) Microsomal lipid peroxidation. Methods Enzymol 52:302–310

    Article  CAS  PubMed  Google Scholar 

  30. Marklund S, Marklund G (1974) Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur J Biochem 47:469–474

    Article  CAS  PubMed  Google Scholar 

  31. Park SB, Goldstein D, Krishnan AV, Lin CSY, Friedlander ML, Cassidy J, Koltzenburg M, Kiernan MC (2013) Chemotherapy-induced peripheral neurotoxicity: a critical analysis. Cancer J Clin 63:419–437

    Article  Google Scholar 

  32. Mora E, Smith EML, Donohoe C, Hertz DL (2016) Vincristine-induced peripheral neuropathy in pediatric cancer patients. Am J cancer Res 6:2416

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Kim EY, Hong SJ (2023) Real-Life Experiences of Chemotherapy-Induced Peripheral Neuropathy in Patients with Cancer: A Qualitative Meta-Synthesis Study. Semin Oncol Nurs 39:151499

    Article  PubMed  Google Scholar 

  34. Alberti P, Salvalaggio A, Argyriou AA, Bruna J, Visentin A, Cavaletti G, Briani C (2022) Neurological complications of conventional and novel anticancer treatments. Cancers 14:6088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Gewandter JS, Mohile SG, Heckler CE, Ryan JL, Kirshner JJ, Flynn PJ, Hopkins JO, Morrow GR (2014) A phase III randomized, placebo-controlled study of topical Amitriptyline and ketamine for chemotherapy-induced peripheral neuropathy (CIPN): a University of Rochester CCOP study of 462 cancer survivors. Support Care Cancer 22:1807–1814

    Article  PubMed  PubMed Central  Google Scholar 

  36. Hammack JE, Michalak JC, Loprinzi CL, Sloan JA, Novotny PJ, Soori GS, Tirona MT, Rowland KM Jr, Stella PJ, Johnson JA (2002) Phase III evaluation of nortriptyline for alleviation of symptoms of cis-platinum-induced peripheral neuropathy. Pain 98:195–203

    Article  CAS  PubMed  Google Scholar 

  37. Was H, Borkowska A, Bagues A, Tu L, Liu JYH, Lu Z, Rudd JA, Nurgali K, Abalo R (2022) Mechanisms of Chemotherapy-Induced neurotoxicity. Front Pharmacol 13:750507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Chung KH, Park SB, Streckmann F, Wiskemann J, Mohile N, Kleckner AS, Colloca L, Dorsey SG, Kleckner IR (2022) Mechanisms, Mediators, and Moderators of the Effects of Exercise on Chemotherapy-Induced Peripheral Neuropathy. Cancers 14:1224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Bae EH, Greenwald MK, Schwartz AG (2021) Chemotherapy-Induced Peripheral Neuropathy: mechanisms and therapeutic avenues. Neurotherapeutics 18:2384–2396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Starobova H, Vetter I (2017) Pathophysiology of chemotherapy-induced peripheral neuropathy. Front Mol Neurosci 10:174

    Article  PubMed  PubMed Central  Google Scholar 

  41. Tofthagen C, McAllister RD, Visovsky C (2013) Peripheral neuropathy caused by Paclitaxel and docetaxel: an evaluation and comparison of symptoms. J Adv Practitioner Oncol 4:204

    Google Scholar 

  42. Wang J, Zhou F, Zhang S, Mao M, Feng S, Wang X (2022) Participation of transient receptor potential vanilloid 1 in the analgesic effect of duloxetine for paclitaxel induced peripheral neuropathic pain. Neurosci Lett 773:136512

    Article  CAS  PubMed  Google Scholar 

  43. Shim HS, Bae C, Wang J, Lee K-H, Hankerd KM, Kim HK, La Chung JM J-H (2019) Peripheral and central oxidative stress in chemotherapy-induced neuropathic pain. Mol Pain 15:1744806919840098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Krukowski K, Eijkelkamp N, Laumet G, Hack CE, Li Y, Dougherty PM, Heijnen CJ, Kavelaars A (2016) CD8 + T cells and endogenous IL-10 are required for resolution of chemotherapy-induced neuropathic pain. J Neurosci 36:11074–11083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Al-Mazidi S, Alotaibi M, Nedjadi T, Chaudhary A, Alzoghaibi M, Djouhri L (2018) Blocking of cytokines signalling attenuates evoked and spontaneous neuropathic pain behaviours in the paclitaxel rat model of chemotherapy‐induced neuropathy. Eur J Pain 22:810–821

    Article  CAS  PubMed  Google Scholar 

  46. Moalem G, Xu K, Yu L (2004) T lymphocytes play a role in neuropathic pain following peripheral nerve injury in rats. Neuroscience 129:767–777

    Article  CAS  PubMed  Google Scholar 

  47. Li Y, Zhang H, Zhang H, Kosturakis AK, Jawad AB, Dougherty PM (2014) Toll-like receptor 4 signaling contributes to Paclitaxel-induced peripheral neuropathy. J Pain 15:712–725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Li QQ, Bever CT (2001) Glatiramer acetate blocks interleukin-1-dependent nuclear factor-κB activation and RANTES expression in human U-251 MG astroglial cells. Mol Brain Res 87:48–60

    Article  CAS  PubMed  Google Scholar 

  49. Aharoni R, Teitelbaum D, Sela M, Arnon R (1997) Copolymer 1 induces T cells of the T helper type 2 that crossreact with myelin basic protein and suppress experimental autoimmune encephalomyelitis. Proc Natl Acad Sci U S A 94:10821–10826

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  50. Aharoni R, Teitelbaum D, Arnon R, Sela M (2001) COPOLYMER 1 INHIBITS MANIFESTATIONS OF GRAFT REJECTION1. Transplantation 72:598–605

    Article  CAS  PubMed  Google Scholar 

  51. Aharoni R, Kayhan B, Brenner O, Domev H, Labunskay G, Arnon R (2006) Immunomodulatory therapeutic effect of glatiramer acetate on several murine models of inflammatory bowel Disease. J Pharmacol Exp Ther 318:68–78

    Article  CAS  PubMed  Google Scholar 

  52. Schank M, Zhao J, Wang L, Nguyen LNT, Zhang Y, Wu XY, Zhang J, Jiang Y, Ning S, El Gazzar M, Moorman JP, Yao ZQ (2023) ROS-induced mitochondrial dysfunction in CD4 T cells from ART-controlled people living with HIV. Viruses 15:1061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Khayatan D, Razavi SM, Arab ZN, Hosseini Y, Niknejad A, Momtaz S, Abdolghaffari AH, Sathyapalan T, Jamialahmadi T, Kesharwani P, Sahebkar A (2023) Superoxide dismutase: a key target for the neuroprotective effects of curcumin. Mol Cell Biochem. https://doi.org/10.1007/s11010-023-04757-5

    Article  PubMed  Google Scholar 

  54. Fidanboylu M, Griffiths LA, Flatters SJ (2011) Global inhibition of reactive oxygen species (ROS) inhibits paclitaxel-induced painful peripheral neuropathy. PLoS ONE 6:e25212

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  55. Makar TK, Guda PR, Ray S, Andhavarapu S, Keledjian K, Gerzanich V, Simard JM, Nimmagadda VKC, Bever CT Jr (2023) Immunomodulatory therapy with glatiramer acetate reduces endoplasmic reticulum stress and mitochondrial dysfunction in experimental autoimmune encephalomyelitis. Sci Rep 13:5635

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  56. Trecarichi A, Duggett NA, Granat L, Lo S, Malik AN, Zuliani-Álvarez L, Flatters SJL (2022) Preclinical evidence for mitochondrial DNA as a potential blood biomarker for chemotherapy-induced peripheral neuropathy. PLoS ONE 17:e0262544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Wu P, Chen Y (2019) Evodiamine ameliorates paclitaxel-induced neuropathic pain by inhibiting inflammation and maintaining mitochondrial anti-oxidant functions. Hum Cell 32:251–259

    Article  CAS  PubMed  Google Scholar 

  58. Xiao WH, Zheng H, Zheng FY, Nuydens R, Meert TF, Bennett GJ (2011) Mitochondrial abnormality in sensory, but not motor, axons in paclitaxel-evoked painful peripheral neuropathy in the rat. Neuroscience 199:461–469

    Article  CAS  PubMed  Google Scholar 

  59. Zheng H, Xiao WH, Bennett GJ (2011) Functional deficits in peripheral nerve mitochondria in rats with paclitaxel-and oxaliplatin-evoked painful peripheral neuropathy. Exp Neurol 232:154–161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Persohn E, Canta A, Schoepfer S, Traebert M, Mueller L, Gilardini A, Galbiati S, Nicolini G, Scuteri A, Lanzani F (2005) Morphological and morphometric analysis of paclitaxel and docetaxel-induced peripheral neuropathy in rats. Eur J Cancer 41:1460–1466

    Article  CAS  PubMed  Google Scholar 

  61. Wozniak KM, Wu Y, Farah MH, Littlefield BA, Nomoto K, Slusher BS (2013) Neuropathy-inducing effects of eribulin mesylate versus paclitaxel in mice with preexisting neuropathy. Neurotox Res 24:338–344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Melli G, Jack C, Lambrinos GL, Ringkamp M, Höke A (2006) Erythropoietin protects sensory axons against paclitaxel-induced distal degeneration. Neurobiol Dis 24:525–530

    Article  CAS  PubMed  Google Scholar 

  63. Oudega M, Xu X-M (2006) Schwann cell transplantation for repair of the adult spinal cord. J Neurotrauma 23:453–467

    Article  PubMed  Google Scholar 

  64. Jessen KR, Mirsky R (1999) Schwann cells and their precursors emerge as major regulators of nerve development. Trends Neurosci 22:402–410

    Article  CAS  PubMed  Google Scholar 

  65. Zanon RG, Pierucci A, Oliveira AL (2009) Interferon beta and glatiramer acetate induce proliferation of Schwann cells in vitro. Acta Neurobiol Exp 69:146–152

    Article  Google Scholar 

  66. Fillingim RB, Maixner W (1995) Gender differences in the responses to noxious stimuli. Pain Forum 4:209–221

    Article  Google Scholar 

  67. Hwang BY, Kim ES, Kim CH, Kwon JY, Kim HK (2012) Gender differences in paclitaxel-induced neuropathic pain behavior and analgesic response in rats. Korean J Anesthesiol 62:66–72

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Deuis JR, Dvorakova LS, Vetter I (2017) Methods used to Evaluate Pain behaviors in rodents. Front Mol Neurosci 10:284

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

SD: Writing—original draft, review & editing, Conceptualization, Methodology, Project administration, Investigation; MG: Writing—original draft, review & editing, Conceptualization, Methodology; ARD: Writing—review & editing, Conceptualization, Methodology; MG-K: Writing— review & editing, Conceptualization, Methodology; HS: Writing—review & editing, Conceptualization, Methodology, Project administration, Formal Analysis.

Corresponding author

Correspondence to Hamed Shafaroodi.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Ethics Approval

The study was performed according to the guidelines of the US National Institute of Health (NIH publication no.85.23, revised 1985) for the care of laboratory animals followed by the institutional Association for the Study of Pain guidelines for American experiments and after ethical approval by Tehran University of Medical Sciences ethics committee.

Patient Consent

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dekamin, S., Ghasemi, M., Dehpour, A.R. et al. Protective Effects of Glatiramer Acetate Against Paclitaxel-Induced Peripheral Neuropathy in Rats: A Role for Inflammatory Cytokines and Oxidative Stress. Neurochem Res 49, 1049–1060 (2024). https://doi.org/10.1007/s11064-023-04088-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-023-04088-3

Keywords

Navigation