Skip to main content

Advertisement

Log in

IGF-1 Combined with OPN Promotes Neuronal Axon Growth in Vitro Through the IGF-1R/Akt/mTOR Signaling Pathway in Lipid Rafts

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

This study aims to investigate the effect of insulin-like growth factor 1 (IGF-1) combined with osteopontin (OPN) on the protein expression levels and growth of neuronal axons and its possible mechanism. In this study, IGF-1 combined with OPN promoted neuronal axon growth through the IGF-1R/Akt/mTOR signaling pathway in lipid rafts, and the effect was better than that of either agent alone. This effect was suppressed when given the mTOR inhibitor rapamycin or the lipid raft cholesterol extraction agent methyl-β-cyclodextrin (M-β-CD). Rapamycin could inhibit the expression of phosphorylated ribosomal S6 protein (p-S6) and phosphorylated protein kinase B (p-Akt) and limit axon growth. In addition to the above effects, M-β-CD significantly downregulated the expression of phosphorylated insulin-like growth factor 1 receptor (p-IR). To further investigate the changes in lipid rafts when stimulated by different recombinant proteins, membrane lipid rafts were isolated to observe the changes by western blot. The expression levels of insulin-like growth factor 1 receptor (IR) and P-IR in the IGF-1 combined with OPN group were the highest. When M-β-CD was administered to the lipid rafts of neurons, the enrichment of IR by IGF-1 combined with OPN was weakened, and the p-IR was decreased. Our study found that IGF-1 combined with OPN could promote axon growth by activating the IGF-1R/Akt/mTOR signaling pathway in neuronal lipid rafts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Bei F, Lee HHC, Liu X, Gunner G, Jin H, Ma L, Wang C, Hou L, Hensch TK, Frank E, Sanes JR, Chen C, Fagiolini M, He Z (2016) Restoration of visual function by enhancing conduction in regenerated axons. Cell 164:219–232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Takabatake M, Goshima Y, Sasaki Y (2020) Semaphorin-3A promotes degradation of Fragile X Mental retardation protein in Growth Cones via the ubiquitin-proteasome pathway. Front Neural Circuits 14:5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Guo C, Cho KS, Li Y, Tchedre K, Antolik C, Ma J, Chew J, Utheim TP, Huang XA, Yu H, Malik MTA, Anzak N, Chen DF (2018) IGFBPL1 regulates Axon Growth through IGF-1-mediated Signaling Cascades. Sci Rep 8:2054

    Article  PubMed  PubMed Central  Google Scholar 

  4. Ko HR, Kwon IS, Hwang I, Jin EJ, Shin JH, Brennan-Minnella AM, Swanson R, Cho SW, Lee KH, Ahn JY (2016) Akt1-Inhibitor of DNA binding2 is essential for growth cone formation and axon growth and promotes central nervous system axon regeneration. Elife 5:e20799

    Article  PubMed  PubMed Central  Google Scholar 

  5. Wang X, Li B, Wang Z, Wang F, Liang J, Chen C, Zhao L, Zhou B, Guo X, Ren L, Yuan X, Chen X, Wang T (2020) miR-30b promotes spinal cord sensory function recovery via the Sema3A/NRP-1/PlexinA1/RhoA/ROCK pathway. J Cell Mol Med 24:12285–12297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Mansour-Robaey S, Clarke DB, Wang YC, Bray GM, Aguayo AJ (1994) Effects of ocular injury and administration of brain-derived neurotrophic factor on survival and regrowth of axotomized retinal ganglion cells. Proc Natl Acad Sci 91:1632–1636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Park KK, Liu K, Hu Y, Smith PD, Wang C, Cai B, Xu B, Connolly L, Kramvis I, Sahin M, He Z (2008) Promoting axon regeneration in the adult CNS by modulation of the PTEN/mTOR pathway. Science 322:963–966

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Agrawal M, Welshhans K (2021) Local translation across neural development: a Focus on Radial glial cells, axons, and synaptogenesis. Front Mol Neurosci 14:717170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Stoeckli ET (2018) Understanding axon guidance: are we nearly there yet? Development 145:dev151415

    Article  PubMed  Google Scholar 

  10. O’Kusky J, Ye P (2012) Neurodevelopmental effects of insulin-like growth factor signaling. Front Neuroendocrinol 33:230–251

    Article  PubMed  PubMed Central  Google Scholar 

  11. Anderson MA, O’Shea TM, Burda JE, Ao Y, Barlatey SL, Bernstein AM, Kim JH, James ND, Rogers A, Kato B, Wollenberg AL, Kawaguchi R, Coppola G, Wang C, Deming TJ, He Z, Courtine G, Sofroniew MV (2018) Required growth facilitators propel axon regeneration across complete spinal cord injury. Nature 561:396–400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ozdinler PH, Macklis JD (2006) IGF-I specifically enhances axon outgrowth of corticospinal motor neurons. Nat Neurosci 9:1371–1381

    Article  PubMed  Google Scholar 

  13. Li R, Li D, Wu C, Ye L, Wu Y, Yuan Y, Yang S, Xie L, Mao Y, Jiang T, Li Y, Wang J, Zhang H, Li X, Xiao J (2020) Nerve growth factor activates autophagy in Schwann cells to enhance myelin debris clearance and to expedite nerve regeneration. Theranostics 10:1649–1677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Xia B, Liu H, Xie J, Wu R, Li Y (2015) Akt enhances nerve growth factor-induced axon growth via activating the Nrf2/ARE pathway. Int J Mol Med 36:1426–1432

    Article  CAS  PubMed  Google Scholar 

  15. Lam HJ, Patel S, Wang A, Chu J, Li S (2010) In vitro regulation of neural differentiation and axon growth by growth factors and bioactive nanofibers. Tissue Eng Part A 16:2641–2648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Duan X, Qiao M, Bei F, Kim IJ, He Z, Sanes JR (2015) Subtype-specific regeneration of retinal ganglion cells following axotomy: effects of osteopontin and mTOR signaling. Neuron 85:1244–1256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Liu Y, Wang X, Li W, Zhang Q, Li Y, Zhang Z, Zhu J, Chen B, Williams PR, Zhang Y, Yu B, Gu X, He Z (2017) A sensitized IGF1 treatment restores Corticospinal Axon-Dependent Functions. Neuron 95:817–833e4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Rahman MA, Cho Y, Hwang H, Rhim H (2020) Pharmacological inhibition of O-GlcNAc transferase promotes mTOR-Dependent autophagy in rat cortical neurons. Brain Sci 10:958

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kanda H, Gu JG (2017) Membrane mechanics of primary afferent neurons in the dorsal Root ganglia of rats. Biophys J 112:1654–1662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Schulte A, Ewald F, Spyra M, Smit DJ, Jiang W, Salamon J, Jücker M, Mautner VF (2020) Combined targeting of AKT and mTOR inhibits proliferation of Human NF1-Associated Malignant Peripheral nerve sheath tumour cells in Vitro but not in a xenograft mouse model in vivo. Int J Mol Sci 21:1548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Han J, Wang B, Xiao Z, Gao Y, Zhao Y, Zhang J, Chen B, Wang X, Dai J (2008) Mammalian target of rapamycin (mTOR) is involved in the neuronal differentiation of neural progenitors induced by insulin. Mol Cell Neurosci 39:118–124

    Article  CAS  PubMed  Google Scholar 

  22. Ibarra-Lecue I, Mollinedo-Gajate I, Meana JJ, Callado LF, Diez-Alarcia R, Urigüen L (2018) Chronic cannabis promotes pro-hallucinogenic signaling of 5-HT2A receptors through Akt/mTOR pathway. Neuropsychopharmacology 43:2028–2035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Tang BL (2020) Axon regeneration induced by environmental enrichment-epigenetic mechanisms. Neural Regen Res 15:10–15

    Article  PubMed  Google Scholar 

  24. Kawai M, Rosen CJ (2010) The IGF-I regulatory system and its impact on skeletal and energy homeostasis. J Cell Biochem 111:14–19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Jones JI, Clemmons DR (1995) Insulin-like growth factors and their binding proteins: biological actions. Endocr Rev 16:3–34

    CAS  PubMed  Google Scholar 

  26. Chen C, Bai X, Bi Y, Liu G, Li H, Liu Z, Liu H (2017) Insulin-like growth factor-1 attenuates apoptosis and protects neurochemical phenotypes of dorsal root ganglion neurons with paclitaxel-induced neurotoxicity in vitro. Nutr Neurosci 20:89–102

    Article  CAS  PubMed  Google Scholar 

  27. Seki T, Abdel Nazeer A, Sekimoto K, Guao Y, Al-jahdari W, Saito S (2010) Fibroblast growth factor and insulin-like growth factor rescue growth cones of sensory neurites from collapse after tetracaine-induced injury. Anesth Analg 10:1468–1472

    Article  Google Scholar 

  28. Jander S, Bussini S, Neuen-Jacob E, Bosse F, Menge T, Müller HW, Stoll G (2002) Osteopontin: a novel axon-regulated Schwann cell gene. J Neurosci Res 67:156–166

    Article  CAS  PubMed  Google Scholar 

  29. Wang X, Louden C, Yue TL, Ellison JA, Barone FC, Solleveld HA, Feuerstein GZ (1998) Delayed expression of osteopontin after focal stroke in the rat. J Neurosci 8:2075–2083

    Article  Google Scholar 

  30. Hashimoto M, Koda M, Ino H, Murakami M, Yamazaki M, Moriya H (2003) Upregulation of osteopontin expression in rat spinal cord microglia after traumatic injury. J Neurotrauma 20:287–296

    Article  PubMed  Google Scholar 

  31. Wright MC, Mi R, Connor E, Reed N, Vyas A, Alspalter M, Coppola G, Geschwind DH, Brushart TM, Höke A (2014) Novel roles for osteopontin and clusterin in peripheral motor and sensory axon regeneration. J Neurosci 34:1689–1700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Israelsson C, Bengtsson H, Kylberg A, Kullander K, Lewen A, Hillered L et al (2008) Distinct cellular patterns of upregulated chemokine expression supporting a prominent inflammatory role in traumatic brain injury. J Neurotrauma 25:959–974

    Article  PubMed  Google Scholar 

  33. Kabouridis PS, Janzen J, Magee AL, Ley SC (2000) Cholesterol depletion disrupts lipid rafts and modulates the activity of multiple signaling pathways in T lymphocytes. Eur J Immunol 30:954–963

    Article  CAS  PubMed  Google Scholar 

  34. Huo H, Guo X, Hong S, Jiang M, Liu X, Liao K (2003) Lipid rafts/caveolae are essential for insulin-like growth factor-1 receptor signaling during 3T3-L1 preadipocyte differentiation induction. J Biol Chem 278:11561–11569

    Article  CAS  PubMed  Google Scholar 

  35. Korade Z, Kenworthy AK (2008) Lipid rafts, cholesterol, and the brain. Neuropharmacology 55:1265–1273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Pike LJ (2009) The challenge of lipid rafts. J Lipid Res Suppl: S323-328

  37. Abulrob A, Giuseppin S, Andrade MF, McDermid A, Moreno M, Stanimirovic D (2004) Interactions of EGFR and caveolin-1 in human glioblastoma cells: evidence that tyrosine phosphorylation regulates EGFR association with caveolae. Oncogene 23:6967–6979

    Article  CAS  PubMed  Google Scholar 

  38. Irwin ME, Bohin N, Boerner JL (2011) Src family kinases mediate epidermal growth factor receptor signaling from lipid rafts in breast cancer cells. Cancer Biol Ther 12:718–726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Remacle-Bonnet M, Garrouste F, Baillat G, Andre F, Marvaldi J, Pommier G (2005) Membrane rafts segregate pro- from anti-apoptotic insulin-like growth factor-I receptor signaling in colon carcinoma cells stimulated by members of the tumor necrosis factor superfamily. Am J Pathol 167:761–773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Parpal S, Karlsson M, Thorn H, Strålfors P (2001) Cholesterol depletion disrupts caveolae and insulin receptor signaling for metabolic control via insulin receptor substrate-1, but not for mitogen-activated protein kinase control. J Biol Chem 276:9670–9678

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors sincerely appreciate the experimental platform support of the State Key Laboratory of Trauma, Burns and Combined Injury, Department of Research Institute of Surgery, Daping Hospital, Army Military Medical University.

Funding

Botao Tan, Wei Jiang and Ying Yin have acquired the rewards of the Kuanren Talents Program of the Second Affiliated Hospital of Chongqing Medical University. This work was supported in part by the National Natural Science Foundation of China (82002377) and Natural Science Foundation of Chongqing (cstc2020jcyj-msxm0651).

Author information

Authors and Affiliations

Authors

Contributions

Qin Zhao wrote the main manuscript text; Hong Su and Wei Jiang performed the data analyses; Haodong Luo and Lu Pan prepared figures; Lehua Yu and Botao Tan reviewed, revised the manuscript. All authors reviewed the manuscript.

Corresponding authors

Correspondence to Lehua Yu or Botao Tan.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Q., Su, H., Jiang, W. et al. IGF-1 Combined with OPN Promotes Neuronal Axon Growth in Vitro Through the IGF-1R/Akt/mTOR Signaling Pathway in Lipid Rafts. Neurochem Res 48, 3190–3201 (2023). https://doi.org/10.1007/s11064-023-03971-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-023-03971-3

Keywords

Navigation