Skip to main content
Log in

Bilirubin Induces A1-Like Reactivity of Astrocyte

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Astrocytes play an important role in the pathogenesis of bilirubin neurotoxicity, and activated astrocytes might be potential mediators of neuroinflammation processes contributing to neuronal cell death and tissue injury. Recent studies have reported that activated microglia induce two types of reactive astrocytes. A1 astrocytes could cause neuronal death and synaptic damage, as well as impaired phagocytosis. Therefore, the purpose of this study was to investigate whether unconjugated bilirubin (UCB)-induced A1-like astrocytes take on a neuroinflammation type and the underlying regulatory mechanisms. In this study, primary cortical astrocytes were treated with UCB in vitro. We detected the expression of complement component 3 (C3), S100 calcium binding protein A10 (S100A10), nuclear factor kappa B (NF-κB), NLR family pyrin domain containing 3 (NLRP3), activated caspase-1, gasdermin D N-terminal (GSDMD-N), PSD95, synaptophysin (SYP), the transcription levels of interleukin (IL)-1β and IL-18, and the survival rate of astrocytes after UCB treatment. The results showed that an increase in C3 was accompanied by a decrease in S100A10, and that A1-like astrocytes were functionally expressed after UCB stimulation. Meanwhile, the NF-κB and caspase-1 pathways were activated after UCB stimulation. After adding the NF-κB-specific inhibitor trans-activator of transcriptional-NEMO-binding domain (TAT-NBD) and caspase-1 specific inhibitor VX-765, the survival rate of astrocytes and neurons increased, whereas the protein expression of C3, NF-κB, NLRP3, activated caspase-1, and GSDMD-N decreased, and the mRNA levels of IL-1β and IL-18 reduced. Thus, we concluded that UCB stimulates the activation of A1-like astrocytes. Inhibition of NF-κB and caspase-1 alleviated A1-like astrocytes and exerted anti-inflammatory protective effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

All data generated or analysed during this study are available from the corresponding author upon reasonable request.

References

  1. Hansen TWR, Wong RJ, Stevenson DK (2020) Molecular physiology and pathophysiology of bilirubin handling by the blood, liver, intestine, and brain in the newborn. Physiol Rev 100:1291–1346

    Article  CAS  PubMed  Google Scholar 

  2. Viktorinova A (2017) Current insights on the role of iron and copper dyshomeostasis in the pathogenesis of bilirubin neurotoxicity. Life Sci 191:34–45

    Article  CAS  PubMed  Google Scholar 

  3. Bech LF, Donneborg ML, Lund AM, Ebbesen F (2018) Extreme neonatal hyperbilirubinemia, acute bilirubin encephalopathy, and kernicterus spectrum disorder in children with galactosemia. Pediatr Res 84:228–232

    Article  CAS  PubMed  Google Scholar 

  4. Song SJ, Hu Y, Gu XF, Si FF, Hua ZY (2014) A novel newborn rat kernicterus model created by injecting a bilirubin solution into the cisterna magna. PLoS ONE 9:e96171

    Article  PubMed  PubMed Central  Google Scholar 

  5. Bockor L, Bortolussi G, Vodret S, Iaconcig A, Jašprová J, Zelenka J et al (2017) Modulation of bilirubin neurotoxicity by the Abcb1 transporter in the Ugt1-/- lethal mouse model of neonatal hyperbilirubinemia. Hum Mol Genet 26:145–157

    CAS  PubMed  Google Scholar 

  6. Vodret S, Bortolussi G, Iaconcig A, Martinelli E, Tiribelli C, Muro AF (2018) Attenuation of neuro-inflammation improves survival and neurodegeneration in a mouse model of severe neonatal hyperbilirubinemia. Brain Behav Immun 70:166–178

    Article  CAS  PubMed  Google Scholar 

  7. Feng J, Li MW, Wei Q, Li SJ, Song SJ, Hua ZY (2018) Unconjugated bilirubin induces pyroptosis in cultured rat cortical astrocytes. J Neuroinflamm 15:23

    Article  Google Scholar 

  8. Huang HM, He CM, Li SY, Zhang Y, Hua ZY (2020) Role of pyroptosis in bilirubin-induced microglial injury. Zhongguo Dang Dai Er Ke Za Zhi 22:1027–1033 (in Chinese)

    PubMed  Google Scholar 

  9. Fernandes A, Barateiro A, Falcão AS, Silva SL, Vaz AR, Brito MA et al (2011) Astrocyte reactivity to unconjugated bilirubin requires TNF-α and IL-1β receptor signaling pathways. Glia 59:14–25

    Article  PubMed  Google Scholar 

  10. Santello M, Toni N, Volterra A (2019) Astrocyte function from information processing to cognition and cognitive impairment. Nat Neurosci 22:154–166

    Article  CAS  PubMed  Google Scholar 

  11. Liddelow SA, Guttenplan KA, Clarke LE, Bennett FC, Bohlen CJ, Schirmer L et al (2017) Neurotoxic reactive astrocytes are induced by activated microglia. Nature 541:481–487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Clarke LE, Liddelow SA, Chakraborty C, Münch AE, Heiman M, Barres BA (2018) Normal aging induces A1-like astrocyte reactivity. Proc Natl Acad Sci USA 115:E1896–E1905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Cao J, Dong LJ, Luo JL, Zeng FN, Hong ZX, Liu YZ et al (2021) Supplemental N-3 polyunsaturated fatty acids limit A1-specific astrocyte polarization via attenuating mitochondrial dysfunction in ischemic stroke in mice. Oxid Med Cell Longev 2021:5524705

    Article  PubMed  PubMed Central  Google Scholar 

  14. Zhang L, Xiao X, Arnold PR, Li XC (2019) Transcriptional and epigenetic regulation of immune tolerance: roles of the NF-κB family members. Cell Mol Immunol 16:315–323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Khan H, Ullah H, Castilho PCMF, Gomila AS, D’Onofrio G, Filosa R et al (2020) Targeting NF-κB signaling pathway in cancer by dietary polyphenols. Crit Rev Food Sci Nutr 60:2790–2800

    Article  CAS  PubMed  Google Scholar 

  16. Nakajima S, Kitamura M (2013) Bidirectional regulation of NF-κB by reactive oxygen species: a role of unfolded protein response. Free Radic Biol Med 65:162–174

    Article  CAS  PubMed  Google Scholar 

  17. Li SJ, Li MW, Zhang Y, Feng J, Hua ZY (2015) TAT-NBD exerts anti-inflammatory effect in rat cortical astrocytes by inhibiting bilirubin-induced nuclear factor-κB activation. Acta Acad Med Mil Tert 37:2131–2136 (in Chinese)

    CAS  Google Scholar 

  18. Li MW, Song SJ, Li SJ, Feng J, Hua ZY (2015) The blockade of NF-κB activation by a specific inhibitory peptide has a strong neuroprotective role in a Sprague–Dawley rat kernicterus model. J Biol Chem 290:30042–30052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lu FF, Lan ZX, Xin ZQ, He CR, Guo ZM, Xia XB et al (2020) Emerging insights into molecular mechanisms underlying pyroptosis and functions of inflammasomes in diseases. J Cell Physiol 235:3207–3221

    Article  CAS  PubMed  Google Scholar 

  20. Tamashiro TT, Dalgard CL, Byrnes KR (2012) Primary microglia isolation from mixed glial cell cultures of neonatal rat brain tissue. J Vis Exp 15:e3814

    Google Scholar 

  21. Qian DF, Li LW, Rong YL, Liu W, Wang Q, Zhou Z et al (2019) Blocking Notch signal pathway suppresses the activation of neurotoxic A1 astrocytes after spinal cord injury. Cell Cycle 18:3010–3029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wannamaker W, Davies R, Namchuk M, Pollard J, Ford P, Ku G et al (2007) (S)-1-((S)-2-{[1-(4-amino-3-chloro-phenyl)-methanoyl]-amino}-3,3-dimethyl-butanoyl)-pyrrolidine-2-carboxylic acid ((2R,3S)-2-ethoxy-5-oxo-tetrahydro-furan-3-yl)-amide (VX-765), an orally available selective interleukin (IL)-converting enzyme/caspase-1 inhibitor, exhibits potent anti-inflammatory activities by inhibiting the release of IL-1beta and IL-18. J Pharmacol Exp Ther 321:509–516

    Article  CAS  PubMed  Google Scholar 

  23. Fernandes A, Falcão A, Silva R, Gordo A, Gama M, Brito M al (2006) Inflammatory signalling pathways involved in astroglial activation by unconjugated bilirubin. J Neurochem 96:1667–1679

    Article  CAS  PubMed  Google Scholar 

  24. Falcão A, Fernandes A, Brito M, Silva R, Brites D (2006) Bilirubin-induced immunostimulant effects and toxicity vary with neural cell type and maturation state. Acta Neuropathol 112:95–105

    Article  PubMed  Google Scholar 

  25. Cayabyab R, Ramanathan R (2019) High unbound bilirubin for age: a neurotoxin with major effects on the developing brain. Pediatr Res 85:183–190

    Article  CAS  PubMed  Google Scholar 

  26. Bhutani VK, Johnson-Hamerman L (2015) The clinical syndrome of bilirubin-induced neurologic dysfunction. Semin Fetal Neonatal Med 20:6–13

    Article  PubMed  Google Scholar 

  27. Berger I, Peleg O, Ofek-Shlomai N (2012) Inflammation and early brain injury in term and preterm infants. Isr Med Assoc J 14:318–323

    PubMed  Google Scholar 

  28. Watchko JF, Tiribelli C (2013) Bilirubin-induced neurologic damage–mechanisms and management approaches. N Engl J Med 369:2021–2030

    Article  CAS  PubMed  Google Scholar 

  29. Ibáñez F, Montesinos J, Ureña-Peralta JR, Guerri C, Pascual M (2019) TLR4 participates in the transmission of ethanol-induced neuroinflammation via astrocyte-derived extracellular vesicles. J Neuroinflamm 16:136

    Article  Google Scholar 

  30. Hinkle JT, Dawson VL, Dawson TM (2019) The A1 astrocyte paradigm: new avenues for pharmacological intervention in neurodegeneration. Mov Disord 34:959–969

    Article  PubMed  PubMed Central  Google Scholar 

  31. Zhang HY, Wang Y, He YD, Wang T, Huang XH, Zhao CM et al (2020) A1 astrocytes contribute to murine depression-like behavior and cognitive dysfunction, which can be alleviated by IL-10 or fluorocitrate treatment. J Neuroinflamm 17:200

    Article  CAS  Google Scholar 

  32. Vainchtein ID, Molofsky AV (2020) Astrocytes and microglia: in sickness and in health. Trends Neurosci 43:144–154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lu YY, Yang YL, Peng ZYF, Xie LL, Zhong XL, Liang F et al (2020) Silencing IFNγ inhibits A1 astrocytes and attenuates neurogenesis decline and cognitive impairment in endotoxemia. Biochem Biophys Res Commun 533:1519–1526

    Article  CAS  PubMed  Google Scholar 

  34. Fang YQ, Ding X, Zhang YH, Cai L, Ge Y, Ma KY et al (2022) Fluoxetine inhibited the activation of A1 reactive astrocyte in a mouse model of major depressive disorder through astrocytic 5-HTR/β-arrestin2 pathway. J Neuroinflamm 19:23

    Article  CAS  Google Scholar 

  35. Schiavon E, Smalley JL, Newton S, Greig NH, Forsythe ID (2018) Neuroinflammation and ER-stress are key mechanisms of acute bilirubin toxicity and hearing loss in a mouse model. PLoS ONE 13:e0201022

    Article  PubMed  PubMed Central  Google Scholar 

  36. Lian H, Yang L, Cole A, Sun L, Chiang AC, Fowler SW et al (2015) NFκB-activated astroglial release of complement C3 compromises neuronal morphology and function associated with Alzheimer’s disease. Neuron 85:101–115

    Article  CAS  PubMed  Google Scholar 

  37. Wang L, Pei S, Han LL, Guo B, Li YF, Duan RR et al (2018) Mesenchymal stem cell-derived exosomes reduce A1 astrocytes via downregulation of phosphorylated NFκB P65 subunit in spinal cord injury. Cell Physiol Biochem 50:1535–1559

    Article  CAS  PubMed  Google Scholar 

  38. Swanson KV, Deng M, Ting JP (2019) The NLRP3 inflammasome: molecular activation and regulation to therapeutics. Nat Rev Immunol 19:477–489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Zhong ZY, Umemura A, Sanchez-Lopez E, Liang S, Shalapour S, Wong J et al (2016) NF-κB restricts inflammasome activation via elimination of damaged mitochondria. Cell 164:896–910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Alishahi M, Farzaneh M, Ghaedrahmati F, Nejabatdoust A, Sarkaki A, Khoshnam SE (2019) NLRP3 inflammasome in ischemic stroke: as possible therapeutic target. Int J Stroke 14:574–591

    Article  PubMed  Google Scholar 

  41. Kelley N, Jeltema D, Duan YH, He Y (2019) The NLRP3 inflammasome: an overview of mechanisms of activation and regulation. Int J Mol Sci 20:3328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Shi JJ, Zhao Y, Wang K, Shi XY, Wang Y, Huang HW et al (2015) Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature 526:660–665

    Article  CAS  PubMed  Google Scholar 

  43. Noe FM, Polascheck N, Frigerio F, Bankstahl M, Ravizza T, Marchini S et al (2013) Pharmacological blockade of IL-1β/IL-1 receptor type 1 axis during epileptogenesis provides neuroprotection in two rat models of temporal lobe epilepsy. Neurobiol Dis 59:183–193

    Article  CAS  PubMed  Google Scholar 

  44. Li SY, Huang HM, Wei Q, He CM, Feng J, Wang Y et al (2021) Depression of pyroptosis by inhibiting caspase-1 activation improves neurological outcomes of kernicterus model rats. ACS Chem Neurosci 12:2929–2939

    Article  CAS  PubMed  Google Scholar 

  45. He CM, Feng J, Huang HM, Hua ZY (2019) Caspase-1 involves in bilirubin-induced injury of cultured rat cortical neurons. Pediatr Res 86:492–499

    Article  CAS  PubMed  Google Scholar 

  46. Zhang YN, Meng TT, Chen JN, Zhang Y, Kang JN, Li XY et al (2021) miR-21a-5p promotes inflammation following traumatic spinal cord injury through upregulation of neurotoxic reactive astrocyte (A1) polarization by inhibiting the CNTF/STAT3/Nkrf pathway. Int J Biol Sci 17:2795–2810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Xu XT, Zhang AW, Zhu YT, He W, Di W, Fang YN et al (2018) MFG-E8 reverses microglial-induced neurotoxic astrocyte (A1) via NF-κB and PI3K-Akt pathways. J Cell Physiol 234:904–914

    Article  PubMed  Google Scholar 

  48. Fan YY, Huo J (2021) A1/A2 astrocytes in central nervous system injuries and diseases: angels or devils? Neurochem Int 148:105080

    Article  CAS  PubMed  Google Scholar 

  49. Escartin C, Galea E, Lakatos A, O’Callaghan J, Petzold G, Serrano-Pozo A et al (2021) Reactive astrocyte nomenclature, definitions, and future directions. Nat Neurosci 24:312–325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (Grant 81971426), the Project of Basic and Frontier Research Plan of Chongqing (Grant CSTC2018jcyjAX0284) and the Postgraduate Research Innovation Project of Chongqing (Grant CYS21227).

Author information

Authors and Affiliations

Authors

Contributions

ZH and SL conceived and designed the study. SL, HH, YZ and LL performed the experiments. SL and ZH participated in analysis and interpretation of data. SL and ZH wrote the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Ziyu Hua.

Ethics declarations

Competing Interests

The authors declare that they have no competing interests.

Ethics Approval

The experimental process was strictly in accordance with the Ethics Committee of Chongqing Medical University and the Chinese Measures for the Use and Management of Experimental Animals.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, S., Huang, H., Zhang, Y. et al. Bilirubin Induces A1-Like Reactivity of Astrocyte. Neurochem Res 48, 804–815 (2023). https://doi.org/10.1007/s11064-022-03810-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-022-03810-x

Keywords

Navigation