Skip to main content

Advertisement

Log in

Knock-Down of CD24 in Astrocytes Aggravates Oxyhemoglobin-Induced Hippocampal Neuron Impairment

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

A Correction to this article was published on 06 January 2022

This article has been updated

Abstract

Subarachnoid hemorrhage (SAH), as one of the most severe hemorrhagic strokes, is closely related to neuronal damage. Neurogenesis is a promising therapy, however, reliable targets are currently lacking. Increasing evidence has indicated that CD24 is associated with the growth of hippocampal neurons and the regulation of neural stem/precursor cell proliferation. To investigate the potential effect of CD24 in astrocytes on neuron growth in the hippocampus, we used a Transwell co-culture system of hippocampal astrocytes and neurons, and oxyhemoglobin (OxyHb) was added to the culture medium to mimic SAH in vitro. A specific lentivirus was used to knock down CD24 expression in astrocytes, which was verified by western blot, quantitative real-time polymerase chain reaction, and immunofluorescent staining. Astrocyte activation, neurite elongation, neuronal apoptosis, and cell viability were also assessed. We first determined the augmented expression level of CD24 in hippocampal astrocytes after SAH. A similar result was observed in cultured astrocytes exposed to OxyHb, and a corresponding change in SHP2/ERK was also noticed. CD24 in astrocytes was then downregulated by the lentivirus, which led to the impairment of axons and dendrites on the co-cultured neurons. Aggravated neuronal apoptosis was induced by the CD24 downregulation in astrocytes, which might be a result of a lower level of brain derived neurotrophic factor (BDNF). In conclusion, the knock-down of CD24 in astrocytes suppressed hippocampal neuron growth, in which the SHP2-ERK signaling pathway and BNDF were possibly involved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

All data generated or analysed during this study are included in this published article [and its supplementary information files].

Code Availability

Not applicable.

Change history

Abbreviations

SAH:

Subarachnoid hemorrhage

OxyHb:

Oxyhemoglobin

BDNF:

Brain derived neurotrophic factor

EBI:

Early brain injury

SVZ:

Subventricular zone

DG:

Dentate gyrus

TBI:

Traumatic brain injury

qPCR:

Quantitative real-time polymerase chain reaction

LV:

Lentiviral vectors

NC:

Negative control

TUNEL:

Terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling

ELISA:

Enzyme-linked immunosorbent assay

DMEM:

Dulbecco’s modified eagle’s medium

FBS:

Fetal bovine serum

CCK8:

Cell counting kit-8

HRP:

Horseradish peroxidase

DAPI:

4,6-Diamidino-2-phenylindole

References

  1. Sehba FA, Hou J, Pluta RM, Zhang JH (2012) The importance of early brain injury after subarachnoid hemorrhage. Prog Neurobiol 97:14–37

    Article  PubMed  PubMed Central  Google Scholar 

  2. Coulibaly AP, Provencio JJ (2020) Aneurysmal subarachnoid hemorrhage: an overview of inflammation-induced cellular changes. Neurotherapeutics 17:436–445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ahmed TA, Adamopoulos C, Karoulia Z, Wu X, Sachidanandam R, Aaronson SA, Poulikakos PI (2019) SHP2 drives adaptive resistance to ERK signaling inhibition in molecularly defined subsets of ERK-dependent tumors. Cell Rep 26:65-78 e65

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Wang H, Zhou XM, Xu WD, Tao T, Liu GJ, Gao YY, Lu Y, Wu LY, Yu Z, Yuan B, Hang CH, Li W (2020) Inhibition of elevated hippocampal CD24 reduces neurogenesis in mice with traumatic brain injury. J Surg Res 245:321–329

    Article  CAS  PubMed  Google Scholar 

  5. Ye F, Garton HJL, Hua Y, Keep RF, Xi G (2021) The role of thrombin in brain injury after hemorrhagic and ischemic stroke. Transl Stroke Res 12:496–511

    Article  PubMed  Google Scholar 

  6. Gonçalves JT, Schafer ST, Gage FH (2016) Adult neurogenesis in the hippocampus: from stem cells to behavior. Cell 167:897–914

    Article  PubMed  CAS  Google Scholar 

  7. Lu H, Cheng G, Hong F, Zhang L, Hu Y, Feng LA-O (2018) A novel 2-phenylamino-quinazoline-based compound expands the neural stem cell pool and promotes the hippocampal neurogenesis and the cognitive ability of adult mice. Stem Cells 36:1273–1285

    Article  CAS  PubMed  Google Scholar 

  8. Song Z, Zhang JH (2020) Recent advances in stem cell research in subarachnoid hemorrhage. Stem Cells Dev 29:178–186

    Article  PubMed  Google Scholar 

  9. Zuo Y, Wang J, Liao F, Yan X, Li J, Huang L, Liu F (2018) Inhibition of heat shock protein 90 by 17-AAG reduces inflammation via P2X7 receptor/NLRP3 inflammasome pathway and increases neurogenesis after subarachnoid hemorrhage in mice. Front Mol Neurosci 11:401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zuo Y, Wang J, Enkhjargal B, Doycheva D, Yan X, Zhang JH, Liu F (2019) Neurogenesis changes and the fate of progenitor cells after subarachnoid hemorrhage in rats. Exp Neurol 311:274–284

    Article  CAS  PubMed  Google Scholar 

  11. Altevogt P, Sammar M, Hüser L, Kristiansen G (2021) Novel insights into the function of CD24: a driving force in cancer. Int J Cancer 148:546–559

    Article  CAS  PubMed  Google Scholar 

  12. Menay F, Herschlik L, De Toro J, Cocozza F, Tsacalian R, Gravisaco MJ, Di Sciullo MP, Vendrell A, Waldner CI, Mongini C (2017) Exosomes isolated from ascites of T-cell lymphoma-bearing mice expressing surface CD24 and HSP-90 induce a tumor-specific immune response. Front Immunol 8:286

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Xiao X, Lao X-M, Chen M-M, Liu R-X, Wei Y, Ouyang F-Z, Chen D-P, Zhao X-Y, Zhao Q, Li X-F, Liu C-L, Zheng L, Kuang D-M (2016) PD-1hi identifies a novel regulatory B-cell population in human hepatoma that promotes disease progression. Cancer Discov 6:546–559

    Article  CAS  PubMed  Google Scholar 

  14. Barkal AA, Brewer RE, Markovic M, Kowarsky M, Barkal SA, Zaro BW, Krishnan V, Hatakeyama J, Dorigo O, Barkal LJ, Weissman IL (2019) CD24 signalling through macrophage Siglec-10 is a target for cancer immunotherapy. Nature 572:392–396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Gilliam DT, Menon V, Bretz NP, Pruszak J (2017) The CD24 surface antigen in neural development and disease. Neurobiol Dis 99:133–144

    Article  CAS  PubMed  Google Scholar 

  16. Deng W, Gu L, Li X, Zheng J, Zhang Y, Duan B, Cui J, Dong J, Du J (2016) CD24 associates with EGFR and supports EGF/EGFR signaling via RhoA in gastric cancer cells. J Transl Med 14:32

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Pei Z, Zhu G, Huo X, Gao L, Liao S, He J, Long Y, Yi H, Xiao S, Yi W, Chen P, Li X, Li G, Zhou Y (2016) CD24 promotes the proliferation and inhibits the apoptosis of cervical cancer cells in vitro. Oncol Rep 35:1593–1601

    Article  CAS  PubMed  Google Scholar 

  18. Wang T-W, Chern E, Hsu C-W, Tseng K-C, Chao H-M (2020) SIRT1-mediated expression of CD24 and epigenetic suppression of novel tumor suppressor miR-1185-1 increases colorectal cancer stemness. Cancer Res 80:5257–5269

    Article  CAS  PubMed  Google Scholar 

  19. Ahmed MAH, Jackson D, Seth R, Robins A, Lobo DN, Tomlinson IPM, Ilyas M (2010) CD24 is upregulated in inflammatory bowel disease and stimulates cell motility and colony formation. Inflamm Bowel Dis 16:795–803

    Article  PubMed  Google Scholar 

  20. Calaora V, Chazal G, Nielsen PJ, Rougon G, Moreau H (1996) mCD24 expression in the developing mouse brain and in zones of secondary neurogenesis in the adult. Neuroscience 73:581–594

    Article  CAS  PubMed  Google Scholar 

  21. Poulatsidou KN, Lagoudaki R, Touloumi O, Kesidou E, Boziki M, Ravanidis S, Chlichlia K, Grigoriou M, Grigoriadis N (2016) Immunophenotype of mouse cerebral hemispheres-derived neural precursor cells. Neurosci Lett 611:33–39

    Article  CAS  PubMed  Google Scholar 

  22. Palanichamy K, Jacob JR, Litzenberg KT, Ray-Chaudhury A, Chakravarti A (2018) Cells isolated from residual intracranial tumors after treatment express iPSC genes and possess neural lineage differentiation plasticity. EBioMedicine 36:281–292

    Article  PubMed  PubMed Central  Google Scholar 

  23. Nieoullon V, Belvindrah R, Rougon G, Chazal G (2005) mCD24 regulates proliferation of neuronal committed precursors in the subventricular zone. Mol Cell Neurosci 28:462–474

    Article  CAS  PubMed  Google Scholar 

  24. Li W, Ling HP Fau - You W-C, You Wc Fau - Liu H-D, Liu Hd Fau - Sun Q, Sun Q Fau - Zhou M-L, Zhou Ml Fau - Shen W, Shen W Fau - Zhao J-B, Zhao Jb Fau - Zhu L, Zhu L Fau - Hang C-H, Hang CH (2014) Elevated cerebral cortical CD24 levels in patients and mice with traumatic brain injury: a potential negative role in nuclear factor κb/inflammatory factor pathway. Mol Neurobiol 49:187-198

  25. Darmanis S, Sloan SA, Zhang Y, Enge M, Caneda C, Shuer LM, Hayden Gephart MG, Barres BA, Quake SR (2015) A survey of human brain transcriptome diversity at the single cell level. Proc Natl Acad Sci U S A 112:7285–7290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Garber C, Vasek MJ, Vollmer LL, Sun T, Jiang X, Klein RS (2018) Astrocytes decrease adult neurogenesis during virus-induced memory dysfunction via IL-1. Nat Immunol 19:151–161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Terrillion CE, Abazyan B, Yang Z, Crawford J, Shevelkin AV, Jouroukhin Y, Yoo KH, Cho CH, Roychaudhuri R, Snyder SH, Jang MH, Pletnikov MV (2017) DISC1 in astrocytes influences adult neurogenesis and hippocampus-dependent behaviors in mice. Neuropsychopharmacology 42:2242–2251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Du Preez A, Onorato D, Eiben I, Musaelyan K, Egeland M, Zunszain PA, Fernandes C, Thuret S, Pariante CM (2021) Chronic stress followed by social isolation promotes depressive-like behaviour, alters microglial and astrocyte biology and reduces hippocampal neurogenesis in male mice. Brain Behav Immun 91:24–47

    Article  PubMed  CAS  Google Scholar 

  29. Belvindrah R, Rougon G, Chazal G (2002) Increased neurogenesis in adult mCD24-deficient mice. J Neurosci 22:3594–3607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Shewan D, Calaora V, Nielsen P, Cohen J, Rougon G, Moreau H (1996) mCD24, a glycoprotein transiently expressed by neurons, is an inhibitor of neurite outgrowth. J Neurosci 16:2624–2634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lieberoth A, Splittstoesser F, Katagihallimath N, Jakovcevski I, Loers G, Ranscht B, Karagogeos D, Schachner M, Kleene R (2009) Lewis(x) and alpha 2,3-sialyl glycans and their receptors TAG-1, Contactin, and L1 mediate CD24-dependent neurite outgrowth. J Neurosci 29:6677–6690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Li Y, Liu Y, Wu P, Tian Y, Liu B, Wang J, Bihl J, Shi H (2021) Inhibition of ferroptosis alleviates early brain injury after subarachnoid hemorrhage in vitro and in vivo via reduction of lipid peroxidation. Cell Mol Neurobiol 41:263–278

    Article  CAS  PubMed  Google Scholar 

  33. Shen H, Chen Z, Wang Y, Gao A, Li H, Cui Y, Zhang L, Xu X, Wang Z, Chen G (2015) Role of neurexin-1β and neuroligin-1 in cognitive dysfunction after subarachnoid hemorrhage in rats. Stroke 46:2607–2615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lu Y, Zhang X-S, Zhang Z-H, Zhou X-M, Gao Y-Y, Liu G-J, Wang H, Wu L-Y, Li W, Hang C-H (2018) Peroxiredoxin 2 activates microglia by interacting with Toll-like receptor 4 after subarachnoid hemorrhage. J Neuroinflamm 15:87

    Article  CAS  Google Scholar 

  35. Cunningham CC, Leclerc N, Flanagan LA, Lu M, Janmey PA, Kosik KS (1997) Microtubule-associated protein 2c reorganizes both microtubules and microfilaments into distinct cytological structures in an actin-binding protein-280-deficient melanoma cell line. J Cell Biol 136:845–857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Gris T, Laplante P, Thebault P, Cayrol R, Najjar A, Joannette-Pilon B, Brillant-Marquis F, Magro E, English SW, Lapointe R, Bojanowski M, Francoeur CL, Cailhier J-F (2019) Innate immunity activation in the early brain injury period following subarachnoid hemorrhage. J Neuroinflammation 16:253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Gottipati MK, Bekyarova E, Brenner M, Haddon RC, Parpura V (2014) Changes in the morphology and proliferation of astrocytes induced by two modalities of chemically functionalized single-walled carbon nanotubes are differentially mediated by glial fibrillary acidic protein. Nano Lett 14:3720–3727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zhou X, Wu Q, Lu Y, Zhang X, Lv S, Shao J, Zhou Y, Chen J, Hou L, Huang C, Zhang X (2019) Crosstalk between soluble PDGF-BB and PDGFRbeta promotes astrocytic activation and synaptic recovery in the hippocampus after subarachnoid hemorrhage. FASEB J 33:9588–9601

    Article  CAS  PubMed  Google Scholar 

  39. Nogueira ABNA, Esteves Veiga JC, Teixeira MJ (2014) Multimodality monitoring, inflammation, and neuroregeneration in subarachnoid hemorrhage. Neurosurgery 75:678–689

    Article  PubMed  Google Scholar 

  40. Song JN, Liu ZW, Sui L, Zhang BF, Zhao YL, Ma XD, Gu H (2016) Dynamic expression of nerve growth factor and its receptor TrkA after subarachnoid hemorrhage in rat brain. Neural Regen Res 11:1278–1284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Rostoker R, Abelson S, Genkin I, Ben-Shmuel S, Sachidanandam R, Scheinman EJ, Bitton-Worms K, Orr ZS, Caspi A, Tzukerman M, LeRoith D (2015) CD24(+) cells fuel rapid tumor growth and display high metastatic capacity. Breast Cancer Res 17:78

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Ming GL, Song H (2011) Adult neurogenesis in the mammalian brain: significant answers and significant questions. Neuron 70:687–702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Pekny M, Wilhelmsson U, Tatlisumak T, Pekna M (2019) Astrocyte activation and reactive gliosis-A new target in stroke? Neurosci Lett 689:45–55

    Article  CAS  PubMed  Google Scholar 

  44. Stein-Gerlach M, Wallasch C, Ullrich A (1998) SHP-2, SH2-containing protein tyrosine phosphatase-2. Int J Biochem Cell B 30:559–566

    Article  CAS  Google Scholar 

  45. Kan C, Yang F, Wang S (2018) SHP2-mediated signal networks in stem cell homeostasis and dysfunction. Stem Cells Int 2018:8351374

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Li SM (2016) The biological function of SHP2 in human disease. Mol Biol 50:22–27

    Article  CAS  Google Scholar 

  47. Ke Y, Zhang EE, Hagihara K, Wu D, Pang Y, Klein R, Curran T, Ranscht B, Feng GS (2007) Deletion of Shp2 in the brain leads to defective proliferation and differentiation in neural stem cells and early postnatal lethality. Mol Cell Biol 27:6706–6717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Toubai T, Hou G, Mathewson N, Liu C, Wang Y, Oravecz-Wilson K, Cummings E, Rossi C, Evers R, Sun Y, Wu J, Choi SW, Fang D, Zheng P, Liu Y, Reddy P (2014) Siglec-G-CD24 axis controls the severity of graft-versus-host disease in mice. Blood 123:3512–3523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Chen GY, Chen X, King S, Cavassani KA, Cheng J, Zheng X, Cao H, Yu H, Qu J, Fang D, Wu W, Bai XF, Liu JQ, Woodiga SA, Chen C, Sun L, Hogaboam CM, Kunkel SL, Zheng P, Liu Y (2011) Amelioration of sepsis by inhibiting sialidase-mediated disruption of the CD24-SiglecG interaction. Nat Biotechnol 29:428–435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Li N, Zheng P, Liu Y (2018) The CD24-Siglec G axis protects mice against cuprizone-induced oligodendrocyte loss: targeting danger signal for neuroprotection. Cell Mol Immunol 15:79–81

    Article  PubMed  Google Scholar 

  51. Chen W, Han C, Xie B, Hu X, Yu Q, Shi L, Wang Q, Li D, Wang J, Zheng P, Liu Y, Cao X (2013) Induction of Siglec-G by RNA viruses inhibits the innate immune response by promoting RIG-I degradation. Cell 152:467–478

    Article  CAS  PubMed  Google Scholar 

  52. von Bohlen Und Halbach O, von Bohlen Und Halbach V (2018) BDNF effects on dendritic spine morphology and hippocampal function. Cell Tissue Res 373:729-741

  53. Kowianski P, Lietzau G, Czuba E, Waskow M, Steliga A, Morys J (2018) BDNF: a key factor with multipotent impact on brain signaling and synaptic plasticity. Cell Mol Neurobiol 38:579–593

    Article  CAS  PubMed  Google Scholar 

  54. Colucci-D’Amato L, Speranza L, Volpicelli F (2020) Neurotrophic factor BDNF, physiological functions and therapeutic potential in depression, neurodegeneration and brain cancer. Int J Mol Sci 21(20):7777

    Article  CAS  PubMed Central  Google Scholar 

  55. Henry RA, Hughes SM, Connor B (2007) AAV-mediated delivery of BDNF augments neurogenesis in the normal and quinolinic acid-lesioned adult rat brain. Eur J Neurosci 25:3513–3525

    Article  PubMed  Google Scholar 

  56. Wang L, Chang X, She L, Xu D, Huang W, Poo MM (2015) Autocrine action of BDNF on dendrite development of adult-born hippocampal neurons. J Neurosci 35:8384–8393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Numakawa T, Odaka H, Adachi N (2018) Actions of brain-derived neurotrophin factor in the neurogenesis and neuronal function, and its involvement in the pathophysiology of brain diseases. Int J Mol Sci 19(11):3650

    Article  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Key Project of Medical Science and Technology Development Foundation, Nanjing Department of Health (No. JQX18001 for W. Li), the Natural Science Foundation of Jiangsu Province, China (BK20201113 for W. Li), and the National Natural Science Foundation, China (Nos. 81871122, 81771291 for C.H. Hang, No. 81801166 for Lingyun Wu, No. 81901203 for Yue Lu).

Funding

This study were funded by National Natural Science Foundation of China (Nos. 81871122, 81771291, 81801166, 81901203) and Fundamental Research Funds for the Central Universities (021414380361).

Author information

Authors and Affiliations

Authors

Contributions

XXC performed the studies and wrote the manuscript, TT analyzed and interpreted results, SG participated in the primary cell culture, HW contributed to the western blotting and the ELISA test, XMZ contributed to the immunofluorescent staining and the qPCR test, YYG contributed to the analysis of the data, CH contributed to the study design, and WL contributed to the study design and the critical reversion of manuscript.

Corresponding authors

Correspondence to Chun-Hua Hang or Wei Li.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethical Approval

All animal procedures were approved by the Ethics Review Committee for Animal Experimentation at Nanjing Drum Tower Hospital and conformed to the Guide for the Care and Use of Laboratory Animals by the National Institutes of Health.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised due to the update of first name and family name of the authors got inverted.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, XX., Tao, T., Gao, S. et al. Knock-Down of CD24 in Astrocytes Aggravates Oxyhemoglobin-Induced Hippocampal Neuron Impairment. Neurochem Res 47, 590–600 (2022). https://doi.org/10.1007/s11064-021-03468-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-021-03468-x

Keywords

Navigation