Skip to main content

Advertisement

Log in

Tat-p27 Ameliorates Neuronal Damage Reducing α-Synuclein and Inflammatory Responses in Motor Neurons After Spinal Cord Ischemia

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

p27Kip1 (p27) regulates the cell cycle by inhibiting G1 progression in cells. Several studies have shown conflicting results on the effects of p27 against cell death in various insults. In the present study, we examined the neuroprotective effects of p27 against H2O2-induced oxidative stress in NSC34 cells and against spinal cord ischemia-induced neuronal damage in rabbits. To promote delivery into NSC34 cells and motor neurons in the spinal cord, Tat-p27 fusion protein and its control protein (Control-p27) were synthesized with or without Tat peptide, respectively. Tat-p27, but not Control-27, was efficiently introduced into NSC34 cells in a concentration- and time-dependent manner, and the protein was detected in the cytoplasm. Tat-p27 showed neuroprotective effects against oxidative stress induced by H2O2 treatment and reduced the formation of reactive oxygen species, DNA fragmentation, and lipid peroxidation in NSC34 cells. Tat-p27, but not Control-p27, ameliorated ischemia-induced neurological deficits and cell damage in the rabbit spinal cord. In addition, Tat-p27 treatment reduced the expression of α-synuclein, activation of microglia, and release of pro-inflammatory cytokines such as interleukin-1β and tumor necrosis factor-α in the spinal cord. Taken together, these results suggest that Tat-p27 inhibits neuronal damage by decreasing oxidative stress, α-synuclein expression, and inflammatory responses after ischemia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The datasets and supporting materials generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Hanson SR, Romi F, Rekand T, Naess H (2015) Long-term outcome after spinal cord infarctions. Acta Neurol Scand 131:253–257

    Article  CAS  PubMed  Google Scholar 

  2. Melissano G, Bertoglio L, Mascia D et al (2016) Spinal cord ischemia is multifactorial: what is the best protocol? J Cardiovasc Surg (Torino) 57:191–201

    Google Scholar 

  3. Al Mamun A, Wu Y, Monalisa I et al (2020) Role of pyroptosis in spinal cord injury and its therapeutic implications. J Adv Res 28:97–109

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Mackey ME, Wu Y, Hu R et al (1997) Cell death suggestive of apoptosis after spinal cord ischemia in rabbits. Stroke 28:2012–2017

    Article  CAS  PubMed  Google Scholar 

  5. Gu C, Li L, Huang Y et al (2020) Salidroside ameliorates mitochondria-dependent neuronal apoptosis after spinal cord ischemia-reperfusion injury partially through inhibiting oxidative stress and promoting mitophagy. Oxid Med Cell Longev 2020:3549704

    PubMed  PubMed Central  Google Scholar 

  6. Halder SK, Milner R (2019) A critical role for microglia in maintaining vascular integrity in the hypoxic spinal cord. Proc Natl Acad Sci USA 116:26029–26037

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Hua Y, Xu N, Ma T, Liu Y, Xu H, Lu Y (2019) Anti-inflammatory effect of lycopene on experimental spinal cord ischemia injury via cyclooxygenase-2 suppression. NeuroImmunoModulation 26:84–92

    Article  CAS  PubMed  Google Scholar 

  8. Simpson DSA, Oliver PL (2020) ROS generation in microglia: understanding oxidative stress and inflammation in neurodegenerative disease. Antioxidants (Basel) 9:743

    Article  CAS  Google Scholar 

  9. Daniele SG, Béraud D, Davenport C, Cheng K, Yin H, Maguire-Zeiss KA (2015) Activation of MyD88-dependent TLR1/2 signaling by misfolded α-synuclein, a protein linked to neurodegenerative disorders. Sci Signal 8:ra45

    Article  PubMed  PubMed Central  Google Scholar 

  10. Lee JS, Lee SJ (2016) Mechanism of anti-α-synuclein immunotherapy. J Mov Disord 9:14–19

    Article  PubMed  PubMed Central  Google Scholar 

  11. Hou L, Bao X, Zang C et al (2018) Integrin CD11b mediates α-synuclein-induced activation of NADPH oxidase through a Rho-dependent pathway. Redox Biol 14:600–608

    Article  CAS  PubMed  Google Scholar 

  12. Polyak K, Kato JY, Solomon MJ et al (1994) p27Kip1, a cyclin-Cdk inhibitor, links transforming growth factor-beta and contact inhibition to cell cycle arrest. Genes Dev 8:9–22

    Article  CAS  PubMed  Google Scholar 

  13. Sgambato A, Cittadini A, Faraglia B, Weinstein IB (2000) Multiple functions of p27(Kip1) and its alterations in tumor cells: a review. J Cell Physiol 183:18–27

    Article  CAS  PubMed  Google Scholar 

  14. Di Giovanni S, Knoblach SM, Brandoli C, Aden SA, Hoffman EP, Faden AI (2003) Gene profiling in spinal cord injury shows role of cell cycle in neuronal death. Ann Neurol 53:454–468

    Article  PubMed  CAS  Google Scholar 

  15. Cernak I, Stoica B, Byrnes KR, Di Giovanni S, Faden AI (2005) Role of the cell cycle in the pathobiology of central nervous system trauma. Cell Cycle 4:1286–1293

    Article  CAS  PubMed  Google Scholar 

  16. Wu J, Stoica BA, Faden AI (2011) Cell cycle activation and spinal cord injury. Neurotherapeutics 8:221–228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Takeda M, Kawaguchi M, Kumatoriya T et al (2011) Effects of minocycline on hind-limb motor function and gray and white matter injury after spinal cord ischemia in rats. Spine (Phila Pa 1976) 36:1919–1924.

  18. Ophascharoensuk V, Fero ML, Hughes J, Roberts JM, Shankland SJ (1998) The cyclin-dependent kinase inhibitor p27Kip1 safeguards against inflammatory injury. Nat Med 4:575–580

    Article  CAS  PubMed  Google Scholar 

  19. Huang YC, Chuang LY, Hung WC (2002) Mechanisms underlying nonsteroidal anti-inflammatory drug-induced p27(Kip1) expression. Mol Pharmacol 62:1515–1521

    Article  CAS  PubMed  Google Scholar 

  20. Akashiba H, Matsuki N, Nishiyama N (2006) p27 small interfering RNA induces cell death through elevating cell cycle activity in cultured cortical neurons: a proof-of-concept study. Cell Mol Life Sci 63:2397–2404

    Article  CAS  PubMed  Google Scholar 

  21. Chen MH, Liu YH, Xu H et al (2016) Lentiviral vector-mediated p27kip1 expression facilitates recovery after spinal cord injury. Mol Neurobiol 53:6043–6056

    Article  CAS  PubMed  Google Scholar 

  22. Ueyama C, Akashiba H, Nakayama K, Nakayama KI, Nishiyama N, Matsuki N (2007) Ablation of p27 enhance kainate-induced seizure and hippocampal degeneration. NeuroReport 18:1781–1785

    Article  PubMed  Google Scholar 

  23. Gallastegui E, Domuro C, Serratosa J et al (2018) p27Kip1 regulates alpha-synuclein expression. Oncotarget 9:16368–16379

    Article  PubMed  PubMed Central  Google Scholar 

  24. Chelluboina B, Kim T, Mehta SL, Kim JY, Bathula S, Vemuganti R (2020) Impact of age and sex on α-syn (α-synuclein) knockdown-mediated poststroke recovery. Stroke 51:3138–3141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kim T, Mehta SL, Morris-Blanco KC et al (2018) The microRNA miR-7a-5p ameliorates ischemic brain damage by repressing α-synuclein. Sci Signal 11:eaat4285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Qiao H, Zhang Q, Yuan H et al (2015) Elevated neuronal α-synuclein promote microglia activation after spinal cord ischemic/reperfused injury. NeuroReport 26:656–661

    Article  CAS  PubMed  Google Scholar 

  27. Sakurai M, Kawamura T, Nishimura H, Suzuki H, Tezuka F, Abe K (2009) Induction of Parkinson disease-related proteins in motor neurons after transient spinal cord ischemia in rabbits. J Cereb Blood Flow Metab 29:752–758

    Article  CAS  PubMed  Google Scholar 

  28. Kim W, Kwon HJ, Jung HY et al (2020) P27 protects neurons from ischemic damage by suppressing oxidative stress and increasing autophagy in the hippocampus. Int J Mol Sci 21:9496

    Article  CAS  PubMed Central  Google Scholar 

  29. Konecny F, Zou J, Husain M, von Harsdorf R (2012) Post-myocardial infarct p27 fusion protein intravenous delivery averts adverse remodelling and improves heart function and survival in rodents. Cardiovasc Res 94:492–500

    Article  CAS  PubMed  Google Scholar 

  30. Sun X, Momen A, Wu J et al (2014) p27 protein protects metabolically stressed cardiomyocytes from apoptosis by promoting autophagy. J Biol Chem 289:16924–16935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Cashman NR, Durham HD, Blusztajn JK et al (1992) Neuroblastoma x spinal cord (NSC) hybrid cell lines resemble developing motor neurons. Dev Dyn 194:209–221

    Article  CAS  PubMed  Google Scholar 

  32. Yoo DY, Cho SB, Jung HY et al (2017) Tat-protein disulfide-isomerase A3: a possible candidate for preventing ischemic damage in the spinal cord. Cell Death Dis 8:e3075

    Article  PubMed  PubMed Central  Google Scholar 

  33. Eggett CJ, Crosier S, Manning P et al (2000) Development and characterisation of a glutamate-sensitive motor neurone cell line. J Neurochem 74:1895–1902

    Article  CAS  PubMed  Google Scholar 

  34. Yeo EJ, Eum WS, Yeo HJ et al (2021) Protective role of transduced Tat-thioredoxin1 (Trx1) against oxidative stress-induced neuronal cell death via ASK1-MAPK signal pathway. Biomol Ther (Seoul) 29:321–330

    Article  PubMed Central  Google Scholar 

  35. Jung HY, Kwon HJ, Kim W et al (2020) Phosphoglycerate mutase 1 prevents neuronal death from ischemic damage by reducing neuroinflammation in the rabbit spinal cord. Int J Mol Sci 21:7425

    Article  CAS  PubMed Central  Google Scholar 

  36. Reagan-Shaw S, Nihal M, Ahmad N (2008) Dose translation from animal to human studies revisited. FASEB J 22:659–661

    Article  CAS  PubMed  Google Scholar 

  37. Kim W, Kwon HJ, Jung HY et al (2019) Tat-HSP70 protects neurons from oxidative damage in the NSC34 cells and ischemic damage in the ventral horn of rabbit spinal cord. Neurochem Int 129:104477

    Article  CAS  PubMed  Google Scholar 

  38. Shen A, Liu Y, Zhao J et al (2008) Temporal-spatial expressions of p27kip1 and its phosphorylation on Serine-10 after acute spinal cord injury in adult rat: Implications for post-traumatic glial proliferation. Neurochem Int 52:1266–1275

    Article  CAS  PubMed  Google Scholar 

  39. Tian DS, Xie MJ, Yu ZY et al (2007) Cell cycle inhibition attenuates microglia induced inflammatory response and alleviates neuronal cell death after spinal cord injury in rats. Brain Res 1135:177–185

    Article  CAS  PubMed  Google Scholar 

  40. Nguyen L, Besson A, Heng JI et al (2006) p27kip1 independently promotes neuronal differentiation and migration in the cerebral cortex. Genes Dev 20:1511–2124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Meikrantz W, Gisselbrecht S, Tam SW, Schlegel R (1994) Activation of cyclin A-dependent protein kinases during apoptosis. Proc Natl Acad Sci USA 91:3754–3758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Harricharan R, Thaver V, Russell VA, Daniels WM (2015) Tat-induced histopathological alterations mediate hippocampus-associated behavioural impairments in rats. Behav Brain Funct 11:3

    Article  PubMed  PubMed Central  Google Scholar 

  43. Fan Y, Gao X, Chen J, Liu Y, He JJ (2016) HIV Tat impairs neurogenesis through functioning as a Notch ligand and activation of Notch signaling pathway. J Neurosci 36:11362–11373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Jung HY, Kwon HJ, Kim W et al (2019) Phosphoglycerate mutase 1 promotes cell proliferation and neuroblast differentiation in the dentate gyrus by facilitating the phosphorylation of cAMP response element-binding protein. Neurochem Res 44:323–332

    Article  CAS  PubMed  Google Scholar 

  45. Bell MT, Puskas F, Agoston VA et al (2013) Toll-like receptor 4-dependent microglial activation mediates spinal cord ischemia-reperfusion injury. Circulation 128:S152–S156

    Article  CAS  PubMed  Google Scholar 

  46. Beattie MS (2004) Inflammation and apoptosis: linked therapeutic targets in spinal cord injury. Trends Mol Med 10:580–583

    Article  CAS  PubMed  Google Scholar 

  47. Surguchev AA, Surguchov A (2017) Synucleins and gene expression: Ramblers in a crowd or cops regulating traffic? Front Mol Neurosci 10:224

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Surgucheva I, He S, Rich MC et al (2014) Role of synucleins in traumatic brain injury—an experimental in vitro and in vivo study in mice. Mol Cell Neurosci 63:114–123. https://doi.org/10.1016/j.mcn.2014.10.005 (PMID: 25447944)

    Article  CAS  PubMed  Google Scholar 

  49. Surguchev AA, Emamzadeh FN, Surguchov A (2019) Cell responses to extracellular α-synuclein. Molecules 24:305

    Article  PubMed Central  CAS  Google Scholar 

  50. Li N, Stewart T, Sheng L et al (2020) Immunoregulation of microglial polarization: an unrecognized physiological function of α-synuclein. J Neuroinflammation 17:272

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Sauerbeck AD, Goldstein EZ, Alfredo AN, Norenberg M, Marcillo A, McTigue DM (2021) Alpha-synuclein increases in rodent and human spinal cord injury and promotes inflammation and tissue loss. Sci Rep 11:11720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT (NRF-2018R1A2B6001941 to Dae Won Kim) and by the Ministry of Education (2019R1A6A1A11036849 to Soo Young Choi).

Author information

Authors and Affiliations

Authors

Contributions

WK, HJK, HYJ, KRH, SMM, YSY, IKH, SYC, and DWK conceived the study. WK, HJK, SYC, and DWK designed the study and wrote the manuscript. WK, HYJ, and KRH conducted the animal experiments. HJK, DWK, and SYC conducted biochemical experiments. SMM, YSY, and IKH participated in designing and discussing the animal study. All authors have read and approved the final manuscript.

Corresponding authors

Correspondence to Soo Young Choi or Dae Won Kim.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, W., Kwon, H.J., Jung, H.Y. et al. Tat-p27 Ameliorates Neuronal Damage Reducing α-Synuclein and Inflammatory Responses in Motor Neurons After Spinal Cord Ischemia. Neurochem Res 46, 3123–3134 (2021). https://doi.org/10.1007/s11064-021-03392-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-021-03392-0

Keywords

Navigation