Skip to main content

Advertisement

Log in

Dexmedetomidine Ameliorates Postoperative Cognitive Dysfunction in Aged Mice

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Neuroinflammation and oxidative stress coexist and interact in the progression of postoperative cognitive dysfunction (POCD) and other neurodegenerative disease. Mounting studies reveal that Dexmedetomidine (Dex) possesses anti-inflammatory and antioxidant properties. Nevertheless, whether Dex exerts neuroprotective effect on the cognitive sequelae of oxidative stress and inflammatory process remains unclear. A mouse model of abdominal exploratory laparotomy-induced cognitive dysfunction was employed to explore the underlying mechanism of neuroprotective effects exerted by Dex in POCD. Aged mice were treated with Dex (20 µg/kg) 20 min prior to surgery. Open field test (OFT) and Morris water maze (MWM) were employed to examine the cognitive function on postoperative day 3 (POD 3) or POD 7. In the present study, mice underwent surgery exhibited cognitive impairment without altering spontaneous locomotor activity, while the surgery-induced cognitive impairment could be alleviated by Dex pretreatment. Dex inhibited surgery-induced pro-inflammatory cytokines accumulation and microglial activation in the hippocampi of mice. Furthermore, Dex decreased MDA levels, enhanced SOD activity, modulated CDK5 activity and increased BDNF expression in the hippocampus. In addition, Dex remarkably reduced the surgery-induced increased ratio of Bax/Bcl-2 and apoptotic neurons in the hippocampi of aged mice. Collectively, our study provides evidence that Dex may exert neuroprotective effects against surgery-induced cognitive impairment through mechanisms involving its anti-inflammatory and antioxidant properties, as well as the suppression on the mitochondrial permeability transition pore and apoptosis-related pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

Data will be made available on reasonable request.

References

  1. Shoair OA et al (2015) Incidence and risk factors for postoperative cognitive dysfunction in older adults undergoing major noncardiac surgery: a prospective study. J Anaesthesiol Clin Pharmacol 31(1):30–36

    Article  PubMed  PubMed Central  Google Scholar 

  2. Infante-Duarte C et al (2008) New developments in understanding and treating neuroinflammation. J Mol Med (Berl) 86(9):975–985

    Article  CAS  Google Scholar 

  3. Gao HM, Hong JS (2008) Why neurodegenerative diseases are progressive: uncontrolled inflammation drives disease progression. Trends Immunol 29(8):357–365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Skaper SD (2007) The brain as a target for inflammatory processes and neuroprotective strategies. Ann NY Acad Sci 1122:23–34

    Article  CAS  PubMed  Google Scholar 

  5. Lin MT, Beal MF (2006) Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature 443(7113):787–795

    Article  CAS  PubMed  Google Scholar 

  6. Singh A et al (2019) Oxidative stress: a key modulator in neurodegenerative diseases. Molecules 24(8):1583

    Article  CAS  PubMed Central  Google Scholar 

  7. Tarafdar A, Pula G (2018) The role of NADPH oxidases and oxidative stress in neurodegenerative disorders. Int J Mol Sci 19(12):3824

    Article  PubMed Central  CAS  Google Scholar 

  8. Sa-Nguanmoo P et al (2017) SGLT2-inhibitor and DPP-4 inhibitor improve brain function via attenuating mitochondrial dysfunction, insulin resistance, inflammation, and apoptosis in HFD-induced obese rats. Toxicol Appl Pharmacol 333:43–50

    Article  CAS  PubMed  Google Scholar 

  9. Godbout JP et al (2005) Exaggerated neuroinflammation and sickness behavior in aged mice following activation of the peripheral innate immune system. FASEB J 19(10):1329–1331

    Article  CAS  PubMed  Google Scholar 

  10. Li Y et al (2015) Effect of dexmedetomidine on early postoperative cognitive dysfunction and peri-operative inflammation in elderly patients undergoing laparoscopic cholecystectomy. Exp Ther Med 10(5):1635–1642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zhu YJ et al (2016) Attenuation of neuroinflammation by dexmedetomidine is associated with activation of a cholinergic anti-inflammatory pathway in a rat tibial fracture model. Brain Res 1644:1–8

    Article  CAS  PubMed  Google Scholar 

  12. Xiang H et al (2014) Dexmedetomidine controls systemic cytokine levels through the cholinergic anti-inflammatory pathway. Inflammation 37(5):1763–1770

    Article  CAS  PubMed  Google Scholar 

  13. Zhu YS et al (2019) Dexmedetomidine protects rats from postoperative cognitive dysfunction via regulating the GABA(B) R-mediated cAMP-PKA-CREB signaling pathway. Neuropathology 39(1):30–38

    Article  CAS  PubMed  Google Scholar 

  14. Endesfelder S et al (2017) Neuroprotective effects of dexmedetomidine against hyperoxia-induced injury in the developing rat brain. PLoS One 12(2):e0171498

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Li F et al (2018) Dexmedetomidine reduces oxidative stress and provides neuroprotection in a model of traumatic brain injury via the PGC-1α signaling pathway. Neuropeptides 72:58–64

    Article  CAS  PubMed  Google Scholar 

  16. Barrientos RM et al (2012) Intracisternal interleukin-1 receptor antagonist prevents postoperative cognitive decline and neuroinflammatory response in aged rats. J Neurosci 32(42):14641–14648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ning Q et al (2017) Neurodegenerative changes and neuroapoptosis induced by systemic lipopolysaccharide administration are reversed by dexmedetomidine treatment in mice. Neurol Res 39(4):357–366

    Article  CAS  PubMed  Google Scholar 

  18. Li J et al (2019) Both GSK-3beta/CRMP2 and CDK5/CRMP2 pathways participate in the protection of dexmedetomidine against propofol-induced learning and memory impairment in neonatal rats. Toxicol Sci 171:193–210

    Article  CAS  Google Scholar 

  19. Vorhees CV, Williams MT (2006) Morris water maze: procedures for assessing spatial and related forms of learning and memory. Nat Protoc 1(2):848–858

    Article  PubMed  PubMed Central  Google Scholar 

  20. Ren L et al (1999) Differential expression of inflammatory mediators in rat microglia cultured from different brain regions. Brain Res Mol Brain Res 65(2):198–205

    Article  CAS  PubMed  Google Scholar 

  21. Yan J et al (2019) The role of SIRT1 in neuroinflammation and cognitive dysfunction in aged rats after anesthesia and surgery. Am J Transl Res 11(3):1555–1568

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Xu J et al (2017) Astrocyte-derived CCL2 participates in surgery-induced cognitive dysfunction and neuroinflammation via evoking microglia activation. Behav Brain Res 332:145–153

    Article  CAS  PubMed  Google Scholar 

  23. McLinden KA, Trunova S, Giniger E (2012) At the fulcrum in health and disease: Cdk5 and the balancing acts of neuronal structure and physiology. Brain Disord Ther 2012(Suppl 1):001

    PubMed  PubMed Central  Google Scholar 

  24. Watamura N et al (2016) Colocalization of phosphorylated forms of WAVE1, CRMP2, and tau in Alzheimer’s disease model mice: involvement of Cdk5 phosphorylation and the effect of ATRA treatment. J Neurosci Res 94(1):15–26

    Article  CAS  PubMed  Google Scholar 

  25. Hawasli AH et al (2007) Cyclin-dependent kinase 5 governs learning and synaptic plasticity via control of NMDAR degradation. Nat Neurosci 10(7):880–886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bath KG, Akins MR, Lee FS (2012) BDNF control of adult SVZ neurogenesis. Dev Psychobiol 54(6):578–589

    Article  CAS  PubMed  Google Scholar 

  27. Benraiss A et al (2001) Adenoviral brain-derived neurotrophic factor induces both neostriatal and olfactory neuronal recruitment from endogenous progenitor cells in the adult forebrain. J Neurosci 21(17):6718–6731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Sun YB et al (2019) Dexmedetomidine inhibits astrocyte pyroptosis and subsequently protects the brain in in vitro and in vivo models of sepsis. Cell Death Dis 10(3):167

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Zhang Y et al (2019) Dexmedetomidine promotes hippocampal neurogenesis and improves spatial learning and memory in neonatal rats. Drug Des Dev Ther 13:4439–4449

    Article  CAS  Google Scholar 

  30. Gao J et al (2019) Dexmedetomidine modulates neuroinflammation and improves outcome via alpha2-adrenergic receptor signaling after rat spinal cord injury. Br J Anaesth 123(6):827–838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wang Y, Jia A, Ma W (2019) Dexmedetomidine attenuates the toxicity of β-amyloid on neurons and astrocytes by increasing BDNF production under the regulation of HDAC2 and HDAC5. Mol Med Rep 19(1):533–540

    CAS  PubMed  Google Scholar 

  32. Ni P et al (2019) Preoperative sleep disturbance exaggerates surgery-induced neuroinflammation and neuronal damage in aged mice. Mediat Inflamm 2019:8301725

    Article  CAS  Google Scholar 

  33. Rosczyk HA, Sparkman NL, Johnson RW (2008) Neuroinflammation and cognitive function in aged mice following minor surgery. Exp Gerontol 43(9):840–846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Brandeis R, Brandys Y, Yehuda S (1989) The use of the Morris Water Maze in the study of memory and learning. Int J Neurosci 48(1–2):29–69

    Article  CAS  PubMed  Google Scholar 

  35. Gelders G, Baekelandt V, Van der Perren A (2018) Linking neuroinflammation and neurodegeneration in Parkinson’s disease. J Immunol Res 2018:4784268

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Calsolaro V, Edison P (2016) Neuroinflammation in Alzheimer’s disease: current evidence and future directions. Alzheimers Dement 12(6):719–732

    Article  PubMed  Google Scholar 

  37. Liu J, Wang F (2017) Role of neuroinflammation in amyotrophic lateral sclerosis: cellular mechanisms and therapeutic implications. Front Immunol 8:1005

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Da SD et al (2016) Decreased toll-like receptor 2 and toll-like receptor 7/8-induced cytokines in Parkinson’s disease patients. Neuroimmunomodulation 23(1):58–66

    Article  CAS  Google Scholar 

  39. Feng X et al (2017) Microglia mediate postoperative hippocampal inflammation and cognitive decline in mice. JCI Insight 2(7):e91229

    Article  PubMed  PubMed Central  Google Scholar 

  40. Wei P et al (2019) The potential role of the NLRP3 inflammasome activation as a link between mitochondria ROS generation and neuroinflammation in postoperative cognitive dysfunction. Front Cell Neurosci 13:73

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Khan MS et al (2016) Anthocyanins protect against LPS-induced oxidative stress-mediated neuroinflammation and neurodegeneration in the adult mouse cortex. Neurochem Int 100:1–10

    Article  CAS  PubMed  Google Scholar 

  42. Yatin SM, Varadarajan S, Butterfield DA (2000) Vitamin E prevents Alzheimer’s amyloid beta-peptide (1–42)-induced neuronal protein oxidation and reactive oxygen species production. J Alzheimers Dis 2(2):123–131

    Article  CAS  PubMed  Google Scholar 

  43. Rimessi A et al (2016) Mitochondrial reactive oxygen species and inflammation: molecular mechanisms, diseases and promising therapies. Int J Biochem Cell Biol 81(Pt B):281–293

    Article  CAS  PubMed  Google Scholar 

  44. Eren I, Naziroğlu M, Demirdaş A (2007) Protective effects of lamotrigine, aripiprazole and escitalopram on depression-induced oxidative stress in rat brain. Neurochem Res 32(7):1188–1195

    Article  CAS  PubMed  Google Scholar 

  45. Zhang W et al (2020) Dexmedetomidine attenuates glutamate-induced cytotoxicity by inhibiting the mitochondrial-mediated apoptotic pathway. Med Sci Monit 26:e922139

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Huang J, Jiang Q (2019) Dexmedetomidine protects against neurological dysfunction in a mouse intracerebral hemorrhage model by inhibiting mitochondrial dysfunction-derived oxidative stress. J Stroke Cerebrovasc Dis 28(5):1281–1289

    Article  PubMed  Google Scholar 

  47. Netto MB et al (2018) Oxidative stress and mitochondrial dysfunction contributes to postoperative cognitive dysfunction in elderly rats. Brain Behav Immun 73:661–669

    Article  CAS  PubMed  Google Scholar 

  48. Seo J et al (2017) Inhibition of p25/Cdk5 attenuates tauopathy in mouse and iPSC models of frontotemporal dementia. J Neurosci 37(41):9917–9924

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Gutiérrez-Vargas JA, Múnera A, Cardona-Gómez GP (2015) CDK5 knockdown prevents hippocampal degeneration and cognitive dysfunction produced by cerebral ischemia. J Cereb Blood Flow Metab 35(12):1937–1949

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Pfänder P et al (2019) Cdk5 deletion enhances the anti-inflammatory potential of GC-mediated GR activation during inflammation. Front Immunol 10:1554

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Sundaram JR et al (2012) Cdk5/p25-induced cytosolic PLA2-mediated lysophosphatidylcholine production regulates neuroinflammation and triggers neurodegeneration. J Neurosci 32(3):1020–1034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Patrick GN et al (1998) p35, the neuronal-specific activator of cyclin-dependent kinase 5 (Cdk5) is degraded by the ubiquitin-proteasome pathway. J Biol Chem 273(37):24057–24064

    Article  CAS  PubMed  Google Scholar 

  53. Liu SL et al (2016) The role of Cdk5 in Alzheimer’s disease. Mol Neurobiol 53(7):4328–4342

    Article  CAS  PubMed  Google Scholar 

  54. Hu Y, Pan S, Zhang HT (2017) Interaction of Cdk5 and cAMP/PKA signaling in the mediation of neuropsychiatric and neurodegenerative diseases. Adv Neurobiol 17:45–61

    Article  PubMed  Google Scholar 

  55. Lu B, Nagappan G, Lu Y (2014) BDNF and synaptic plasticity, cognitive function, and dysfunction. Handb Exp Pharmacol 220:223–250

    Article  CAS  PubMed  Google Scholar 

  56. Fan D et al (2016) Enriched environment attenuates surgery-induced impairment of learning, memory, and neurogenesis possibly by preserving BDNF expression. Mol Neurobiol 53(1):344–354

    Article  CAS  PubMed  Google Scholar 

  57. Bogush A et al (2007) AKT and CDK5/p35 mediate brain-derived neurotrophic factor induction of DARPP-32 in medium size spiny neurons in vitro. J Biol Chem 282(10):7352–7359

    Article  CAS  PubMed  Google Scholar 

  58. Fang QJ et al (2020) Surgery-induced downregulation of hippocampal sirtuin-1 contributes to cognitive dysfunction by inhibiting autophagy and activating apoptosis in aged mice. Am J Transl Res 12(12):8111–8122

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Hockenbery DM et al (1993) Bcl-2 functions in an antioxidant pathway to prevent apoptosis. Cell 75(2):241–251

    Article  CAS  PubMed  Google Scholar 

  60. Park JR, Hockenbery DM (1996) BCL-2, a novel regulator of apoptosis. J Cell Biochem 60(1):12–17

    Article  CAS  PubMed  Google Scholar 

  61. Dietrich JB (1997) Apoptosis and anti-apoptosis genes in the Bcl-2 family. Arch Physiol Biochem 105(2):125–135

    Article  CAS  PubMed  Google Scholar 

  62. Rohn TT et al (2008) Lack of pathology in a triple transgenic mouse model of Alzheimer’s disease after overexpression of the anti-apoptotic protein Bcl-2. J Neurosci 28(12):3051–3059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

XX and ZS: Investigation, Writing-Original draft preparation. CH and KZ: Methodology, Data curation. MG: Visualization, Software. FW and KQ: Writing-Reviewing and Editing.

Corresponding authors

Correspondence to Fei Wang or Kai Qin.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, X., Shen, Z., Hu, C. et al. Dexmedetomidine Ameliorates Postoperative Cognitive Dysfunction in Aged Mice. Neurochem Res 46, 2415–2426 (2021). https://doi.org/10.1007/s11064-021-03386-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-021-03386-y

Keywords

Navigation