Skip to main content

Advertisement

Log in

Protective Effect of Piceatannol Against Cerebral Ischaemia–Reperfusion Injury Via Regulating Nrf2/HO-1 Pathway In Vivo and Vitro

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Piceatannol is a natural plant-derived compound with protective effects against cardiovascular diseases. However, its effect on cerebral ischaemia–reperfusion injury (CIRI) induced by oxidative stress remains unclear. This study aimed to investigate piceatannol’s antioxidation in CIRI. An in vitro oxygen–glucose deprivation followed by reoxygenation model was used and cell viability was measured. A middle cerebral artery occlusion followed by reperfusion model was used in vivo. Neurological function, encephalisation quotient, oedema, and volume of the cerebral infarction were then evaluated. The effects of piceatannol on histopathological findings, as well as the ultrastructure of the cortex, were analysed. The activity of superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and lactate dehydrogenase (LDH) and the malondialdehyde (MDA) content was measured both in vitro and in vivo. Finally, the expression of nuclear factor erythroid-2-related factor 2 (Nrf2), hemeoxygenase-1 (HO-1), and nicotinamide adenine dinucleotide phosphate quinone oxidoreductase 1 (NQO1) in cerebral tissue was detected using reverse transcription quantitative polymerase chain reaction (RT-qPCR) and western blotting. Our results demonstrated that cell viability in the piceatannol groups was increased. The SOD, GSH-Px activities were increased as LDH activity and MDA content decreased in the piceatannol groups both in vitro and in vivo, reflecting a decrease in oxidative stress. The neurological severity score and infarction volume in the piceatannol groups at doses of 10 and 20 mg/kg were lower than those of the model group. Furthermore, the damage seen on histopathological examination was partially attenuated by piceatannol. RT-qPCR and western blot analysis indicated that the expression of Nrf2, HO-1, and NQO1 were significantly increased by piceatannol. The results of the study demonstrate that piceatannol exerts a protective effect against CIRI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Rebouças Filho PP, Sarmento RM, Holanda GB, de Alencar LD (2017) New approach to detect and classify stroke in skull CT images via analysis of brain tissue densities. Comput Methods Programs Biomed 148:27–43. https://doi.org/10.1016/j.cmpb.2017.06.011

    Article  PubMed  Google Scholar 

  2. Wiesmann M, Zinnhardt B, Reinhardt D, Eligehausen S, Wachsmuth L, Hermann S, Dederen PJ, Hellwich M, Kuhlmann MT, Broersen LM, Heerschap A, Jacobs AH, Kiliaan AJ (2017) A specific dietary intervention to restore brain structure and function after ischemic stroke. Theranostics 7:493–512. https://doi.org/10.7150/thno.17559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Thorén M, Dixit A, Escudero-Martínez I, Gdovinová Z, Klecka L, Rand V-M, Toni D, Vilionskis A, Wahlgren N, Ahmed N (2020) Effect of recanalization on cerebral edema in ischemic stroke treated with thrombolysis and/or endovascular therapy. Stroke 51:216–223. https://doi.org/10.1161/STROKEAHA.119.026692

    Article  PubMed  Google Scholar 

  4. Yin P, Wei Y, Wang X, Zhu M, Feng J (2018) Roles of specialized pro-resolving lipid mediators in cerebral ischemia reperfusion injury. Front Neurol 9:1–17. https://doi.org/10.3389/fneur.2018.00617

    Article  Google Scholar 

  5. Sies H (2015) Oxidative stress: a concept in redox biology and medicine. Redox Biol 4:180–183. https://doi.org/10.1016/j.redox.2015.01.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Carvalho C, Moreira PI (2018) Oxidative stress: a major player in cerebrovascular alterations associated to neurodegenerative events. Front Physiol 9:1–14. https://doi.org/10.3389/fphys.2018.00806

    Article  PubMed  PubMed Central  Google Scholar 

  7. Banerjee S, Ghosh S, Mandal A, Ghosh N, Sil PC (2020) ROS-associated immune response and metabolism: a mechanistic approach with implication of various diseases. Arch Toxicol 94:2293–2317. https://doi.org/10.1007/s00204-020-02801-7

    Article  CAS  PubMed  Google Scholar 

  8. Wang L, Pu Z, Li M, Wang K, Deng L, Chen W (2020) Antioxidative and antiapoptosis: neuroprotective effects of dauricine in Alzheimer’s disease models. Life Sci 243:117237. https://doi.org/10.1016/j.lfs.2019.117237

    Article  CAS  PubMed  Google Scholar 

  9. Dai X, Yan X, Wintergerst KA, Cai L, Keller BB, Tan Y (2020) Nrf2: redox and metabolic regulator of stem cell state and function. Trends Mol Med 26:185–200. https://doi.org/10.1016/j.molmed.2019.09.007

    Article  CAS  PubMed  Google Scholar 

  10. Chang C, Zhao Y, Song G, She K (2018) Resveratrol protects hippocampal neurons against cerebral ischemia–reperfusion injury via modulating JAK/ERK/STAT signaling pathway in rats. J Neuroimmunol 315:9–14. https://doi.org/10.1016/j.jneuroim.2017.11.015

    Article  CAS  PubMed  Google Scholar 

  11. Hosoda R, Hamada H, Uesugi D, Iwahara N, Nojima I, Horio Y, Kuno A (2021) Different antioxidative and antiapoptotic effects of piceatannol and resveratrol. J Pharmacol Exp Ther 376:385–396. https://doi.org/10.1124/jpet.120.000096

    Article  CAS  PubMed  Google Scholar 

  12. Hu WH, Dai DK, Zheng BZ-Y, Duan R, Dong TT-X, Qin Q-W, Tsim KW-K (2020) Piceatannol, a natural analog of resveratrol, exerts anti-angiogenic efficiencies by blockage of vascular endothelial growth factor binding to its receptor. Molecules 25:3769. https://doi.org/10.3390/molecules25173769

    Article  CAS  PubMed Central  Google Scholar 

  13. Lee HJ, Kang M-G, Cha HY, Kim YM, Lim Y, Yang SJ (2019) Effects of piceatannol and resveratrol on sirtuins and hepatic inflammation in high-fat diet-fed mice. J Med Food 22:833–840. https://doi.org/10.1089/jmf.2018.4261

    Article  CAS  PubMed  Google Scholar 

  14. Madreiter-Sokolowski CT, Gottschalk B, Parichatikanond W, Eroglu E, Klec C, Waldeck-Weiermair M, Malli R, Graier WF (2016) Resveratrol specifically kills cancer cells by a devastating increase in the Ca2+ coupling between the greatly tethered endoplasmic reticulum and mitochondria. Cell Physiol Biochem 39:1404–1420. https://doi.org/10.1159/000447844

    Article  CAS  PubMed  Google Scholar 

  15. Boutron I, Percie du Sert N, Hurst V, Ahluwalia A, Alam S, Avey MT, Baker M, Browne WJ, Clark A, Cuthill IC, Dirnagl U, Emerson M, Garner P, Holgate ST, Howells DW, Karp NA, Lazic SE, Lidster K, MacCallum CJ, Macleod M, Pearl EJ, Petersen OH, Rawle F, Reynolds P, Rooney K, Sena ES, Silberberg SD, Steckler T, Würbel H (2020) The ARRIVE guidelines 2.0: updated guidelines for reporting animal research. PLoS Biol 18:e3000410. https://doi.org/10.1113/JP280389

    Article  CAS  Google Scholar 

  16. Song Y, Bei Y, Xiao Y, Tong HD, Wu XQ, Chen MT (2018) Edaravone, a free radical scavenger, protects neuronal cells’ mitochondria from ischemia by inactivating another new critical factor of the 5-lipoxygenase pathway affecting the arachidonic acid metabolism. Brain Res 1690:96–104. https://doi.org/10.1016/j.brainres.2018.03.006

    Article  CAS  PubMed  Google Scholar 

  17. Longa EZ, Weinstein PR, Carlson S, Cummins R (1989) Reversible middle cerebral artery occlusion without craniectomy in rats. Stroke 20:84–91. https://doi.org/10.1161/01.STR.20.1.84

    Article  CAS  PubMed  Google Scholar 

  18. Bieber M, Gronewold J, Scharf A-C, Schuhmann MK, Langhauser F, Hopp S, Mencl S, Geuss E, Leinweber J, Guthmann J, Doeppner TR, Kleinschnitz C, Stoll G, Kraft P, Hermann DM (2019) Validity and reliability of neurological scores in mice exposed to middle cerebral artery occlusion. Stroke 50:2875–2882. https://doi.org/10.1161/STROKEAHA.119.026652

    Article  PubMed  Google Scholar 

  19. Liu L, Ding J, Leng X, Pu Y, Huang L, Xu A, Wong K, Wang X, Wang Y (2018) Guidelines for evaluation and management of cerebral collateral circulation in ischaemic stroke 2017. Stroke Vasc Neurol 3:117–130. https://doi.org/10.1136/svn-2017-000135

    Article  PubMed  PubMed Central  Google Scholar 

  20. Kim JS (2019) tPA helpers in the treatment of acute ischemic stroke: are they ready for clinical use? J Stroke 21:160–174. https://doi.org/10.5853/jos.2019.00584

    Article  PubMed  PubMed Central  Google Scholar 

  21. Li C, Zhang L, Wang C, Teng H, Fan B, Chopp M, Zhang ZG (2019) N-acetyl-seryl-aspartyl-lysyl-proline augments thrombolysis of tPA (tissue-type plasminogen activator) in aged rats after stroke. Stroke 50:2547–2554. https://doi.org/10.1161/STROKEAHA.119.026212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Xue R, Du M, Zhou TY, Ai WZ, Zhang ZS, Xiang XW, Zhou YF, Wen ZS (2020) Polysaccharides from hemp seed protect against cyclophosphamide-induced intestinal oxidative damage via Nrf2-Keap1 signaling pathway in mice. Oxid Med Cell Longev 2020:1–13. https://doi.org/10.1155/2020/1813798

    Article  CAS  Google Scholar 

  23. Xiao X, Lu Z, Lin V, May A, Shaw DH, Wang Z, Che B, Tran K, Du H, Shaw PX (2018) MicroRNA miR-24-3p reduces apoptosis and regulates Keap1-Nrf2 pathway in mouse cardiomyocytes responding to ischemia/reperfusion injury. Oxid Med Cell Longev 2018:1–9. https://doi.org/10.1155/2018/7042105

    Article  CAS  Google Scholar 

  24. Fei D, Wang Y, Zhai Q, Zhang X, Zhang Y, Wang Y, Li B, Wang Q (2021) KAT6A regulates stemness of aging bone marrow-derived mesenchymal stem cells through Nrf2/ARE signaling pathway. Stem Cell Res Ther 12:104–117. https://doi.org/10.1186/s13287-021-02164-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kaspar JW, Niture SK, Jaiswal AK (2009) Nrf 2:INrf2 (Keap1) signaling in oxidative stress. Free Radic Biol Med 47:1304–1309. https://doi.org/10.1016/j.freeradbiomed.2009.07.035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lv Y, Jiang H, Li S, Han B, Liu Y, Yang D, Li J, Yang Q, Wu P, Zhang Z (2020) Sulforaphane prevents chromium-induced lung injury in rats via activation of the Akt/GSK-3β/Fyn pathway. Environ Pollut 259:113812. https://doi.org/10.1016/j.envpol.2019.113812

    Article  CAS  PubMed  Google Scholar 

  27. Hao Y, Liu J, Wang Z, Yu L, Wang J (2019) Piceatannol protects human retinal pigment epithelial cells against hydrogen peroxide induced oxidative stress and apoptosis through modulating PI3K/Akt signaling pathway. Nutrients 11:1515. https://doi.org/10.3390/nu11071515

    Article  CAS  PubMed Central  Google Scholar 

  28. Narayanan SV, Dave KR, Saul I, Perez-Pinzon MA (2015) Resveratrol preconditioning protects against cerebral ischemic injury via nuclear erythroid 2–related factor 2. Stroke 46:1626–1632. https://doi.org/10.1161/STROKEAHA.115.008921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sato D, Shimizu N, Shimizu Y, Akagi M, Eshita Y, Ozaki S-i, Nakajima N, Ishihara K, Masuoka N, Hamada H, Shimoda K, Kubota N (2014) Synthesis of glycosides of resveratrol, pterostilbene, and piceatannol, and their anti-oxidant, anti-allergic, and neuroprotective activities. Biosci Biotechnol Biochem 78:1123–1128. https://doi.org/10.1080/09168451.2014.921551

    Article  CAS  PubMed  Google Scholar 

  30. Sueishi Y, Nii R, Kakizaki N (2017) Resveratrol analogues like piceatannol are potent antioxidants as quantitatively demonstrated through the high scavenging ability against reactive oxygen species and methyl radical. Bioorg Med Chem Lett 27:5203–5206. https://doi.org/10.1016/j.bmcl.2017.10.045

    Article  CAS  PubMed  Google Scholar 

  31. Wen H, Fu Z, Wei Y, Zhang X, Ma L, Gu L, Li J (2018) Antioxidant activity and neuroprotective activity of stilbenoids in rat primary cortex neurons via the PI3K/Akt signalling pathway. Molecules 23:2328. https://doi.org/10.3390/molecules23092328

    Article  CAS  PubMed Central  Google Scholar 

Download references

Funding

This work was funded by the National Natural Science Foundation of China (81573643), the Natural Science Foundation of ZheJiang Province (Y20H280057).

Author information

Authors and Affiliations

Authors

Contributions

LFW, XZ and ZH designed the study. LFW conducted the most of the experiments. YG provided valued guidance for the article writing and major revision. JY, ZP and PH assisted biochemical analysis. FQ and DZ provided technical support. LFW, XZ and ZH wrote the manuscript.

Corresponding authors

Correspondence to Xiaoming Zhong or Zhen Huang.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Ethical Approval

All experiments were performed according to the National Institutes of Health Guide for the Care and Use of Laboratory Animals and approved by the Animal Care Committee of Zhejiang Chinese Medical University.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Guo, Y., Ye, J. et al. Protective Effect of Piceatannol Against Cerebral Ischaemia–Reperfusion Injury Via Regulating Nrf2/HO-1 Pathway In Vivo and Vitro. Neurochem Res 46, 1869–1880 (2021). https://doi.org/10.1007/s11064-021-03328-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-021-03328-8

Keywords

Navigation