Skip to main content

Advertisement

Log in

Dopamine D1 Receptor in the Nucleus Accumbens Modulates the Emergence from Propofol Anesthesia in Rat

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

It has been reported that systemic activation of D1 receptors promotes emergence from isoflurane-induced unconsciousness, suggesting that the central dopaminergic system is involved in the process of recovering from general anesthesia. The nucleus accumbens (NAc) contains abundant GABAergic medium spiny neurons (MSNs) expressing the D1 receptor (D1R), which plays a key role in sleep–wake behavior. However, the role of NAc D1 receptors in the process of emergence from general anesthesia has not been identified. Here, using real-time in vivo fiber photometry, we found that neuronal activity in the NAc was markedly disinhibited during recovery from propofol anesthesia. Subsequently, microinjection of a D1R selective agonist (chloro-APB hydrobromide) into the NAc notably reduced the time to emerge from propofol anesthesia with a decrease in δ-band power and an increase in β-band power evident in the cortical electroencephalogram. These effects were prevented by pretreatment with a D1R antagonist (SCH-23390). Whole-cell patch clamp recordings were performed to further explore the cellular mechanism underlying the modulation of D1 receptors on MSNs under propofol anesthesia. Our data primarily demonstrated that propofol increased the frequency and prolonged the decay time of spontaneous inhibitory postsynaptic currents (sIPSCs) and miniature IPSCs (mIPSCs) of MSNs expressing D1 receptors. A D1R agonist attenuated the effect of propofol on the frequency of sIPSCs and mIPSCs, and the effects of the agonist were eliminated by preapplication of SCH-23390. Collectively, these results indicate that modulation of the D1 receptor on the activity of NAc MSNs is vital for emergence from propofol-induced unconsciousness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

All data are provided in the manuscript.

References

  1. Hight DF, Dadok VM, Szeri AJ, Garcia PS, Voss L, Sleigh JW (2014) Emergence from general anesthesia and the sleep-manifold. Front Syst Neurosci 8:146. https://doi.org/10.3389/fnsys.2014.00146

    Article  PubMed  PubMed Central  Google Scholar 

  2. Chidambaran V, Sadhasivam S, Diepstraten J, Esslinger H, Cox S, Schnell BM, Samuels P, Inge T, Vinks AA, Knibbe CA (2013) Evaluation of propofol anesthesia in morbidly obese children and adolescents. BMC Anesthesiol 13:8. https://doi.org/10.1186/1471-2253-13-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Pandin P, Estruc I, Van Hecke D, Truong HN, Marullo L, Hublet S, Van Obbergh L (2019) Brain aging and anesthesia. J Cardiothorac Vasc Anesth 33(Suppl 1):S58–S66. https://doi.org/10.1053/j.jvca.2019.03.042

    Article  PubMed  Google Scholar 

  4. Cascella M, Bimonte S, Muzio MR (2018) Towards a better understanding of anesthesia emergence mechanisms: research and clinical implications. World J Methodol 8(2):9–16. https://doi.org/10.5662/wjm.v8.i2.9

    Article  PubMed  PubMed Central  Google Scholar 

  5. Franks NP, Zecharia AY (2011) Sleep and general anesthesia. Can J Anaesth 58(2):139–148. https://doi.org/10.1007/s12630-010-9420-3

    Article  PubMed  Google Scholar 

  6. Zhong H, Tong L, Gu N, Gao F, Lu Y, Xie RG, Liu J, Li X, Bergeron R, Pomeranz LE, Mackie K, Wang F, Luo CX, Ren Y, Wu SX, Xie Z, Xu L, Li J, Dong H, Xiong L, Zhang X (2017) Endocannabinoid signaling in hypothalamic circuits regulates arousal from general anesthesia in mice. J Clin Investig 127(6):2295–2309. https://doi.org/10.1172/JCI91038

    Article  PubMed  Google Scholar 

  7. Du WJ, Zhang RW, Li J, Zhang BB, Peng XL, Cao S, Yuan J, Yuan CD, Yu T, Du JL (2018) The locus coeruleus modulates intravenous general anesthesia of zebrafish via a cooperative mechanism. Cell Rep 24(12):3146–3155. https://doi.org/10.1016/j.celrep.2018.08.046

    Article  CAS  PubMed  Google Scholar 

  8. Muller CP, Pum ME, Amato D, Schuttler J, Huston JP, Silva MA (2011) The in vivo neurochemistry of the brain during general anesthesia. J Neurochem 119(3):419–446. https://doi.org/10.1111/j.1471-4159.2011.07445.x

    Article  CAS  PubMed  Google Scholar 

  9. Monti JM, Monti D (2007) The involvement of dopamine in the modulation of sleep and waking. Sleep Med Rev 11(2):113–133. https://doi.org/10.1016/j.smrv.2006.08.003

    Article  PubMed  Google Scholar 

  10. Oishi Y, Lazarus M (2017) The control of sleep and wakefulness by mesolimbic dopamine systems. Neurosci Res 118:66–73. https://doi.org/10.1016/j.neures.2017.04.008

    Article  CAS  PubMed  Google Scholar 

  11. Kenny JD, Taylor NE, Brown EN, Solt K (2015) Dextroamphetamine (but not atomoxetine) induces reanimation from general anesthesia: implications for the roles of dopamine and norepinephrine in active emergence. PLoS ONE 10(7):e0131914. https://doi.org/10.1371/journal.pone.0131914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Taylor NE, Chemali JJ, Brown EN, Solt K (2013) Activation of D1 dopamine receptors induces emergence from isoflurane general anesthesia. Anesthesiology 118(1):30–39. https://doi.org/10.1097/ALN.0b013e318278c896

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Taylor NE, Van Dort CJ, Kenny JD, Pei J, Guidera JA, Vlasov KY, Lee JT, Boyden ES, Brown EN, Solt K (2016) Optogenetic activation of dopamine neurons in the ventral tegmental area induces reanimation from general anesthesia. Proc Natl Acad Sci USA 113(45):12826–12831. https://doi.org/10.1073/pnas.1614340113

    Article  CAS  PubMed  Google Scholar 

  14. Solt K, Van Dort CJ, Chemali JJ, Taylor NE, Kenny JD, Brown EN (2014) Electrical stimulation of the ventral tegmental area induces reanimation from general anesthesia. Anesthesiology 121(2):311–319. https://doi.org/10.1097/ALN.0000000000000117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ross S, Peselow E (2009) The neurobiology of addictive disorders. Clin Neuropharmacol 32(5):269–276

    Article  CAS  Google Scholar 

  16. Dalley JW, Fryer TD, Brichard L, Robinson ES, Theobald DE, Laane K, Pena Y, Murphy ER, Shah Y, Probst K, Abakumova I, Aigbirhio FI, Richards HK, Hong Y, Baron JC, Everitt BJ, Robbins TW (2007) Nucleus accumbens D2/3 receptors predict trait impulsivity and cocaine reinforcement. Science 315(5816):1267–1270. https://doi.org/10.1126/science.1137073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Salgado S, Kaplitt MG (2015) The nucleus accumbens: a comprehensive review. Stereotact Funct Neurosurg 93(2):75–93. https://doi.org/10.1159/000368279

    Article  PubMed  Google Scholar 

  18. Bertran-Gonzalez J, Bosch C, Maroteaux M, Matamales M, Herve D, Valjent E, Girault JA (2008) Opposing patterns of signaling activation in dopamine D1 and D2 receptor-expressing striatal neurons in response to cocaine and haloperidol. J Neurosci 28(22):5671–5685. https://doi.org/10.1523/jneurosci.1039-08.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Qiu MH, Vetrivelan R, Fuller PM, Lu J (2010) Basal ganglia control of sleep-wake behavior and cortical activation. Eur J Neurosci 31(3):499–507. https://doi.org/10.1111/j.1460-9568.2009.07062.x

    Article  PubMed  PubMed Central  Google Scholar 

  20. Qiu MH, Liu W, Qu WM, Urade Y, Lu J, Huang ZL (2012) The role of nucleus accumbens core/shell in sleep-wake regulation and their involvement in modafinil-induced arousal. PLoS ONE 7(9):e45471. https://doi.org/10.1371/journal.pone.0045471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Luo YJ, Li YD, Wang L, Yang SR, Yuan XS, Wang J, Cherasse Y, Lazarus M, Chen JF, Qu WM, Huang ZL (2018) Nucleus accumbens controls wakefulness by a subpopulation of neurons expressing dopamine D1 receptors. Nat Commun 9(1):1576. https://doi.org/10.1038/s41467-018-03889-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Glen JBI (2018) The discovery and development of propofol anesthesia: the 2018 Lasker-DeBakey clinical medical research award. JAMA 320(12):1235–1236. https://doi.org/10.1001/jama.2018.12756

    Article  PubMed  Google Scholar 

  23. Paxinos G, Watson C (2007) The rat brain in stereotaxic coordinates, 6th edn. Academic Press, Boston

    Google Scholar 

  24. Wang Y, Yu T, Yuan C, Yuan J, Luo Z, Pan Y, Zhang Y, Zhang Y, Yu B (2016) Effects of propofol on the dopamine, metabolites and GABAA receptors in media prefrontal cortex in freely moving rats. Am J Transl Res 8(5):2301–2308

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Li Y, Zhong W, Wang D, Feng Q, Liu Z, Zhou J, Jia C, Hu F, Zeng J, Guo Q, Fu L, Luo M (2016) Serotonin neurons in the dorsal raphe nucleus encode reward signals. Nat Commun 7:10503. https://doi.org/10.1038/ncomms10503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zhou Y, Wang X, Cao T, Xu J, Wang D, Restrepo D, Li A (2017) Insulin modulates neural activity of pyramidal neurons in the anterior piriform cortex. Front Cell Neurosci 11:378. https://doi.org/10.3389/fncel.2017.00378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Luo T, Yu S, Cai S, Zhang Y, Jiao Y, Yu T, Yu W (2018) Parabrachial neurons promote behavior and electroencephalographic arousal from general anesthesia. Front Mol Neurosci 11:420. https://doi.org/10.3389/fnmol.2018.00420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Fu B, Liu C, Zhang Y, Fu X, Zhang L, Yu T (2017) Ketamine attenuates the glutamatergic neurotransmission in the ventral posteromedial nucleus slices of rats. BMC Anesthesiol 17(1):111. https://doi.org/10.1186/s12871-017-0404-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hopf FW, Cascini MG, Gordon AS, Diamond I, Bonci A (2003) Cooperative activation of dopamine D1 and D2 receptors increases spike firing of nucleus accumbens neurons via G-protein betagamma subunits. J Neurosci 23(12):5079–5087

    Article  CAS  Google Scholar 

  30. Le Moine C, Bloch B (1996) Expression of the D3 dopamine receptor in peptidergic neurons of the nucleus accumbens: comparison with the D1 and D2 dopamine receptors. Neuroscience 73(1):131–143

    Article  Google Scholar 

  31. Monti JM, Fernandez M, Jantos H (1990) Sleep during acute dopamine D1 agonist SKF 38393 or D1 antagonist SCH 23390 administration in rats. Neuropsychopharmacology 3(3):153–162

    CAS  PubMed  Google Scholar 

  32. Trampus M, Ferri N, Monopoli A, Ongini E (1991) The dopamine D1 receptor is involved in the regulation of REM sleep in the rat. Eur J Pharmacol 194(2–3):189–194. https://doi.org/10.1016/0014-2999(91)90104-x

    Article  CAS  PubMed  Google Scholar 

  33. Fu B, Yu T, Yuan J, Gong X, Zhang M (2017) Noradrenergic transmission in the central medial thalamic nucleus modulates the electroencephalographic activity and emergence from propofol anesthesia in rats. J Neurochem 140(6):862–873. https://doi.org/10.1111/jnc.13939

    Article  CAS  PubMed  Google Scholar 

  34. Munoz B, Yevenes GE, Forstera B, Lovinger DM, Aguayo LG (2018) Presence of inhibitory glycinergic transmission in medium spiny neurons in the nucleus accumbens. Front Mol Neurosci 11:228. https://doi.org/10.3389/fnmol.2018.00228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. McDougall SJ, Bailey TW, Mendelowitz D, Andresen MC (2008) Propofol enhances both tonic and phasic inhibitory currents in second-order neurons of the solitary tract nucleus (NTS). Neuropharmacology 54(3):552–563. https://doi.org/10.1016/j.neuropharm.2007.11.001

    Article  CAS  PubMed  Google Scholar 

  36. Eckle VS, Rudolph U, Antkowiak B, Grasshoff C (2015) Propofol modulates phasic and tonic GABAergic currents in spinal ventral horn interneurones. Br J Anaesth 114(3):491–498. https://doi.org/10.1093/bja/aeu269

    Article  CAS  PubMed  Google Scholar 

  37. Li J, Yu T, Shi F, Zhang Y, Duan Z, Fu B, Zhang Y (2018) Involvement of ventral periaqueductal gray dopaminergic neurons in propofol anesthesia. Neurochem Res 43(4):838–847. https://doi.org/10.1007/s11064-018-2486-y

    Article  CAS  PubMed  Google Scholar 

  38. Podda MV, Riccardi E, D’Ascenzo M, Azzena GB, Grassi C (2010) Dopamine D1-like receptor activation depolarizes medium spiny neurons of the mouse nucleus accumbens by inhibiting inwardly rectifying K+ currents through a cAMP-dependent protein kinase A-independent mechanism. Neuroscience 167(3):678–690. https://doi.org/10.1016/j.neuroscience.2010.02.075

    Article  CAS  PubMed  Google Scholar 

  39. Bass CE, Grinevich VP, Kulikova AD, Bonin KD, Budygin EA (2013) Terminal effects of optogenetic stimulation on dopamine dynamics in rat striatum. J Neurosci Methods 214(2):149–155. https://doi.org/10.1016/j.jneumeth.2013.01.024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Yin L, Li L, Deng J, Wang D, Guo Y, Zhang X, Li H, Zhao S, Zhong H, Dong H (2019) Optogenetic/chemogenetic activation of gabaergic neurons in the ventral tegmental area facilitates general anesthesia via projections to the lateral hypothalamus in mice. Front Neural Circ 13:73. https://doi.org/10.3389/fncir.2019.00073

    Article  CAS  Google Scholar 

  41. Dobbs LK, Kaplan AR, Lemos JC, Matsui A, Rubinstein M, Alvarez VA (2016) Dopamine regulation of lateral inhibition between striatal neurons gates the stimulant actions of cocaine. Neuron 90(5):1100–1113. https://doi.org/10.1016/j.neuron.2016.04.031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kohnomi S, Ebihara K, Kobayashi M (2017) Suppressive regulation of lateral inhibition between medium spiny neurons via dopamine D1 receptors in the rat nucleus accumbens shell. Neurosci Lett 636:58–63. https://doi.org/10.1016/j.neulet.2016.10.049

    Article  CAS  PubMed  Google Scholar 

  43. Qu WM, Huang ZL, Xu XH, Matsumoto N, Urade Y (2008) Dopaminergic D1 and D2 receptors are essential for the arousal effect of modafinil. J Neurosci 28(34):8462–8469. https://doi.org/10.1523/JNEUROSCI.1819-08.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

An early version of this manuscript was presented in the Best of Abstracts (Basic Science) session in the American Society Anesthesiologists (ASA) annual meeting 2019. We thank all individuals who took part in this research.

Funding

This research was supported by grants from the National Natural Science Foundation of China (NSFC, Grant Nos. 81560237 and 81860204).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chengxi Liu.

Ethics declarations

Conflict of interest

The authors declare no potential conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Gui, H., Duan, Z. et al. Dopamine D1 Receptor in the Nucleus Accumbens Modulates the Emergence from Propofol Anesthesia in Rat. Neurochem Res 46, 1435–1446 (2021). https://doi.org/10.1007/s11064-021-03284-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-021-03284-3

Keywords

Navigation