Skip to main content

Advertisement

Log in

Restraint Stress Potentiated Morphine Sensitization: Involvement of Dopamine Receptors within the Nucleus Accumbens

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Sensitization to psychostimulant drugs, as well as morphine, subjected to cross-sensitization with stress. The development of morphine sensitization is associated with enhancements in dopamine overflow in the Nucleus accumbens (NAc). This study aimed to examine the role of accumbal D1/D2-like dopamine receptors in restraint stress (RS) induced sensitization to morphine antinociceptive effects. Adult male Wistar rats weighing 220–250 g underwent stereotaxic surgery. Two stainless steel guide cannulae were bilaterally implanted, 1 mm above the NAc injection site. Different solutions of SCH-23390, as a D1-like receptor antagonist or sulpiride, as a D2-like receptor antagonist, were microinjected into the NAc five min before exposure to RS. Restraint stress lasted for 3 h, 10 min after RS termination; animals received a subcutaneous injection of morphine (1 mg/kg) for 3 consecutive days. The procedure was followed by a 5-day drug and/or stress-free period. After that, on the 9th day, the nociceptive response was evaluated by the tail-flick test. The results revealed that intra-NAc administration of D1/D2-like dopamine receptor antagonists, SCH-23390 or sulpiride, respectively, blocked morphine sensitization-induced by RS and morphine co-administration in rats for three consecutive days. This work provides new insight into the determinant role of accumbal dopamine receptors in morphine sensitization produced by RS-morphine co-administration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Phillips TJ (1997) Behavior genetics of drug sensitization. Crit Rev Neurobiol 11:21–33. https://doi.org/10.1615/CritRevNeurobiol.v11.i1.20

    Article  CAS  PubMed  Google Scholar 

  2. Vezina P, Leyton M (2009) Conditioned cues and the expression of stimulant sensitization in animals and humans. Neuropharmacology 56:160–168. https://doi.org/10.1016/j.neuropharm.2008.06.070

    Article  CAS  PubMed  Google Scholar 

  3. Reisi Z, Bani-Ardalan M, Zarepour L, Haghparast A (2014) Involvement of D1/D2 dopamine receptors within the nucleus accumbens and ventral tegmental area in the development of sensitization to antinociceptive effect of morphine. Pharmacol Biochem Behav 118:16–21. https://doi.org/10.1016/j.pbb.2013.12.023

    Article  CAS  PubMed  Google Scholar 

  4. Lv Y, Rong Hu R, Jing M, Yun Zhao T, Wu N, Song R, Li J, Hu G (2019) Selective dopamine D3 receptor antagonist YQA14 inhibits morphine-induced behavioral sensitization in wild type, but not in dopamine D3 receptor knockout mice. Acta Pharmacol Sin 40:583–588. https://doi.org/10.1038/s41401-018-0153-0

    Article  CAS  PubMed  Google Scholar 

  5. Hyman SE, Malenka RC, Nestler EJ (2006) Neural mechanisms of addiction: The role of reward-related learning and memory. Annu Rev Neurosci 29:565–598. https://doi.org/10.1146/annurev.neuro.29.051605.113009

    Article  CAS  PubMed  Google Scholar 

  6. Cheng YC, Tsai RY, Sung YT, Chen IJ, Tu TY, Mao YY, Wong CS (2019) Melatonin regulation of transcription in the reversal of morphine tolerance: microarray analysis of differential gene expression. Int J Mol Med 43:791–806. https://doi.org/10.3892/ijmm.2018.4030

    Article  CAS  PubMed  Google Scholar 

  7. T.J. Zhang, Y. Qiu, Z. Hua. (2019). The Emerging Perspective of Morphine Tolerance: MicroRNAs, Pain Res Manag 2019. https://doi.org/https://doi.org/10.1155/2019/9432965.

  8. Zernig G, Ahmed SH, Cardinal RN, Morgan D, Acquas E, Foltin RW, Vezina P, Negus SS, Crespo JA, Stöckl P, Grubinger P, Madlung E, Haring C, Kurz M, Saria A (2007) Explaining the escalation of drug use in substance dependence: Models and appropriate animal laboratory tests. Pharmacology 80:65–119. https://doi.org/10.1159/000103923

    Article  CAS  PubMed  Google Scholar 

  9. Di Chiara G, Imperato A (1988) Drugs abused by humans preferentially increase synaptic dopamine concentrations in the mesolimbic system of freely moving rats. Proc Natl Acad Sci USA. 85:5274–5278. https://doi.org/10.1073/pnas.85.14.5274

    Article  PubMed  PubMed Central  Google Scholar 

  10. Di Chiara G, Bassareo V, Fenu S, De Luca MA, Spina L, Cadoni C, Acquas E, Carboni E, Valentini V, Lecca D (2004) Dopamine and drug addiction: the nucleus accumbens shell connection. Neuropharmacology 47:227–241. https://doi.org/10.1016/j.neuropharm.2004.06.032

    Article  CAS  PubMed  Google Scholar 

  11. Covey DP, Bunner KD, Schuweiler DR, Cheer JF, Garris PA (2016) Amphetamine elevates nucleus accumbens dopamine via an action potential-dependent mechanism that is modulated by endocannabinoids. Eur J Neurosci 43:1661–1673. https://doi.org/10.1111/ejn.13248

    Article  PubMed  PubMed Central  Google Scholar 

  12. Corre J, Van Zessen R, Loureiro M, Patriarchi T, Tian L, Pascoli V, Lüscher C (2018) Dopamine neurons projecting to medial shell of the nucleus accumbens drive heroin reinforcement. Elife 7:e39945

    Article  PubMed  PubMed Central  Google Scholar 

  13. Tjon GHK, De Vries TJ, Ronken E, Hogenboom F, Wardeh G, Mulder AH, Schoffelmeer ANM (1994) Repeated and chronic morphine administration causes differential long-lasting changes in dopaminergic neurotransmission in rat striatum without changing its δ- and κ-opioid receptor regulation. Eur J Pharmacol 252:205–212. https://doi.org/10.1016/0014-2999(94)90598-3

    Article  CAS  PubMed  Google Scholar 

  14. Beyer CE, Steketee JD (2002) Cocaine sensitization: modulation by dopamine D2 receptors. Cereb Cortex 12:526–535. https://doi.org/10.1093/cercor/12.5.526

    Article  PubMed  Google Scholar 

  15. Charmchi E, Zendehdel M, Haghparast A (2016) The effect of forced swim stress on morphine sensitization: Involvement of D1/D2-like dopamine receptors within the nucleus accumbens. Prog. Neuro-Psychopharmacol Biol Psychiatry 70:92–99. https://doi.org/10.1016/j.pnpbp.2016.05.006

    Article  CAS  Google Scholar 

  16. Shaham Y, Kelsey JE, Stewart J (1995) Erratum: Temporal factors in the effect of restraint stress on morphine-induced behavioral sensitization in the rat (Psychopharmacology (1995) 117 (102–109)). Psychopharmacology (Berl). 118:480

    Article  CAS  Google Scholar 

  17. Booij L, Welfeld K, Leyton M, Dagher A, Boileau I, Sibon I, Baker GB, Diksic M, Soucy JP, Pruessner JC (2016) Dopamine cross-sensitization between psychostimulant drugs and stress in healthy male volunteers. Transl Psychiatry. 6:e740–e740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Holly EN, Debold JF, Miczek KA (2015) Increased mesocorticolimbic dopamine during acute and repeated social defeat stress: Modulation by corticotropin releasing factor receptors in the ventral tegmental area. Psychopharmacology (Berl) 232:4469–4479. https://doi.org/10.1007/s00213-015-4082-z

    Article  CAS  Google Scholar 

  19. Imperato A, Puglisi-Allegra S, Casolini P, Zocchi A, Angelucci L (1989) Stress-induced enhancement of dopamine and acetylcholine release in limbic structures: role of corticosterone. Eur J Pharmacol 165:337–338. https://doi.org/10.1016/0014-2999(89)90735-8

    Article  CAS  PubMed  Google Scholar 

  20. Moore H, Rose HJ, Grace AA (2001) Chronic cold stress reduces the spontaneous activity of ventral tegmental dopamine neurons. Neuropsychopharmacology 24:410–419. https://doi.org/10.1016/S0893-133X(00)00188-3

    Article  CAS  PubMed  Google Scholar 

  21. Y. Razavi, S. Karimi, M. Bani-Ardalan, A. Haghparast (2014) Chemical stimulation of the lateral hypothalamus potentiated the sensitization to morphine in rats: Involvement of orexin-1 receptor in the ventral tegmental area. EXCLI J 13: 1120–1130. https://doi.org/https://doi.org/10.17877/DE290R-7236.

  22. Abad ATK, Miladi-Gorji H, Bigdeli I (2016) Effects of swimming exercise on morphine-induced reward and behavioral sensitization in maternally-separated rat pups in the conditioned place preference procedure. Neurosci Lett 631:79–84. https://doi.org/10.1016/j.neulet.2016.08.011

    Article  CAS  PubMed  Google Scholar 

  23. Pang G, Wu X, Tao X, Mao R, Liu X, Zhang YM, Li G, Stackman RW, Dong L, Zhang G (2016) Blockade of serotonin 5-HT2A receptors suppresses behavioral sensitization and naloxone-precipitated withdrawal symptoms in morphine-treated mice. Front Pharmacol 7:514. https://doi.org/10.3389/fphar.2016.00514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Sun J, Tian L, Cui R, Li X (2017) Huperzine A inhibits immediate addictive behavior but not behavioral sensitization following repeated morphine administration in rats. Exp Ther Med. 13:1584–1591. https://doi.org/10.3892/etm.2017.4097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zarrindast MR, Asgari-Afshar A, Sahebgharani M (2007) Morphine-induced antinociception in the formalin test: Sensitization and interactions with D1 and D2 dopamine receptors and nitric oxide agents. Behav Pharmacol 18:177–184. https://doi.org/10.1097/FBP.0b013e32813c5462

    Article  CAS  PubMed  Google Scholar 

  26. G. Paxinos, C. Watson, (1982) The Rat Brain in Stereotaxic Coordinates: Hard Cover Edition (Google eBook), Elsevier

  27. Pacchioni AM, Gioino G, Assis A, Cancela LM (2002) A single exposure to restraint stress induces behavioral and neurochemical sensitization to stimulating effects of amphetamine: Involvement of NMDA receptors. Ann NY Acad Sci 965:233–246. https://doi.org/10.1111/j.1749-6632.2002.tb04165.x

    Article  CAS  PubMed  Google Scholar 

  28. Del Rosario CN, Pacchioni AM, Cancela LM (2002) Influence of acute or repeated restraint stress on morphine-induced locomotion: involvement of dopamine, opioid and glutamate receptors. Behav Brain Res 134:229–238. https://doi.org/10.1016/S0166-4328(02)00038-4

    Article  PubMed  Google Scholar 

  29. P.E. Carneiro De Oliveira, R.M. Leão, P.C. Bianchi, M.T. Marin, C. Da Silva Planeta, F.C. Cruz (2016) Stress-induced locomotor sensitization to amphetamine in adult, but not in adolescent rats, is associated with increased expression of ΔFosB in the nucleus accumbens. Front Behav Neurosci 10: 173. https://doi.org/https://doi.org/10.3389/fnbeh.2016.00173.

  30. Rezayof A, Assadpour S, Alijanpour S (2013) Morphine-induced anxiolytic-like effect in morphine-sensitized mice: Involvement of ventral hippocampal nicotinic acetylcholine receptors. Pharmacol Biochem Behav 103:460–466. https://doi.org/10.1016/j.pbb.2012.10.003

    Article  CAS  PubMed  Google Scholar 

  31. Assar N, Mahmoudi D, Mousavi Z, Zarrabian S, Haghparast A (2019) Role of orexin-1 and -2 receptors within the nucleus accumbens in the acquisition of sensitization to morphine in rats. Behav Brain Res 373:112090. https://doi.org/10.1016/j.bbr.2019.112090

    Article  CAS  PubMed  Google Scholar 

  32. Molaei M, Sanati MH, Zaringhalam J, Haghparast A (2014) Microinjection of WIN55,212–2 as a cannabinoid agonist into the basolateral amygdala induces sensitization to morphine in rats. Basic Clin Neurosci 5:295–302

    PubMed  PubMed Central  Google Scholar 

  33. King T, Ossipov MH, Vanderah TW, Porreca F, Lai J (2005) Is paradoxical pain induced by sustained opioid exposure an underlying mechanism of opioid antinociceptive tolerance? NeuroSignals 14:194–205. https://doi.org/10.1159/000087658

    Article  CAS  PubMed  Google Scholar 

  34. Colvin LA, Bull F, Hales TG (2019) Perioperative opioid analgesia—when is enough too much? A review of opioid-induced tolerance and hyperalgesia. Lancet 393:1558–1568. https://doi.org/10.1016/S0140-6736(19)30430-1

    Article  PubMed  Google Scholar 

  35. Rowbotham MC, Wallace M (2020) Evolution of analgesic tolerance and opioid-induced hyperalgesia over 6 months: double-blind randomized trial incorporating experimental pain models. J Pain. https://doi.org/10.1016/j.jpain.2020.01.005

    Article  PubMed  Google Scholar 

  36. Roeckel LA, Utard V, Reiss D, Mouheiche J, Maurin H, Robé A, Audouard E, Wood JN, Goumon Y, Simonin F, Gaveriaux-Ruff C (2017) Morphine-induced hyperalgesia involves mu opioid receptors and the metabolite morphine-3-glucuronide. Sci. Rep. 7:1–15. https://doi.org/10.1038/s41598-017-11120-4

    Article  CAS  Google Scholar 

  37. Ahmadi S, Golbaghi H, Azizbeigi R, Esmailzadeh N (2014) N-methyl-D-aspartate receptors involved in morphine-induced hyperalgesia in sensitized mice. Eur J Pharmacol 737:85–90. https://doi.org/10.1016/j.ejphar.2014.04.048

    Article  CAS  PubMed  Google Scholar 

  38. Calcagnetti DJ, Holtzman SG (1990) Factors affecting restraint stress-induced potentiation of morphine analgesia. Brain Res 537:157–162. https://doi.org/10.1016/0006-8993(90)90352-C

    Article  CAS  PubMed  Google Scholar 

  39. Calcagnetti DJ, Holtzman SG (1992) Potentiation of morphine analgesia in rats given a single exposure to restraint stress immobilization. Pharmacol Biochem Behav 41:449–453. https://doi.org/10.1016/0091-3057(92)90125-Y

    Article  CAS  PubMed  Google Scholar 

  40. Calcagnetti DJ, Fleetwood SW, Holtzman SG (1990) Pharmacological profile of the potentiation of opioid analgesia by restraint stress. Pharmacol Biochem Behav 37:193–199. https://doi.org/10.1016/0091-3057(90)90061-L

    Article  CAS  PubMed  Google Scholar 

  41. Isovich E, Mijnster MJ, Flügge G, Fuchs E (2000) Chronic psychosocial stress reduces the density of dopamine transporters. Eur. J Neurosci 12:1071–1078. https://doi.org/10.1046/j.1460-9568.2000.00969.x

    Article  CAS  PubMed  Google Scholar 

  42. Dronjak S, Gavrilovic L (2006) Effects of stress on catecholamine stores in central and peripheral tissues of long-term socially isolated rats. Brazilian J Med Biol Res 39:785–790. https://doi.org/10.1590/S0100-879X2006000600011

    Article  CAS  Google Scholar 

  43. Natarajan R, Forrester L, Chiaia NL, Yamamoto BK (2017) Chronic-stress-induced behavioral changes associated with subregion-selective serotonin cell death in the dorsal raphe. J Neurosci 37:6214–6223. https://doi.org/10.1523/JNEUROSCI.3781-16.2017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Hannibal KE, Bishop MD (2014) Chronic stress, cortisol dysfunction, and pain: a psychoneuroendocrine rationale for stress management in pain rehabilitation. Phys Ther 94:1816–1825. https://doi.org/10.2522/ptj.20130597

    Article  PubMed  PubMed Central  Google Scholar 

  45. G. Dantas, I.L. Da Silva Torres, L.M. Crema, D.R. Lara, C. Dalmaz (2005) Repeated restraint stress reduces opioid receptor binding in different rat CNS structures. Neurochem Res 30:1–7. https://doi.org/https://doi.org/10.1007/s11064-004-9679-2.

  46. Garcia-Keller C, Martinez SA, Esparza MA, Bollati F, Kalivas PW, Cancela LM (2013) Cross-sensitization between cocaine and acute restraint stress is associated with sensitized dopamine but not glutamate release in the nucleus accumbens. Eur J Neurosci 37:982–995. https://doi.org/10.1111/ejn.12121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Rougé-Pont F, Deroche V, Le Moal M, Piazza PV (1998) Individual differences in stress-induced dopamine release in the nucleus accumbens are influenced by corticosterone. Eur J Neurosci 10:3903–3907. https://doi.org/10.1046/j.1460-9568.1998.00438.x

    Article  PubMed  Google Scholar 

  48. Graf EN, Wheeler RA, Baker DA, Ebben AL, Hill JE, Mcreynolds JR, Robble MA, Vranjkovic O, Wheeler DS, Mantsch JR, Gasser PJ (2013) Corticosterone acts in the nucleus accumbens to enhance dopamine signaling and potentiate reinstatement of cocaine seeking. J Neurosci 33:11800–11810. https://doi.org/10.1523/JNEUROSCI.1969-13.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Douma EH, de Kloet ER (2020) Stress-induced plasticity and functioning of ventral tegmental dopamine neurons. Neurosci Biobehav Rev 108:48–77. https://doi.org/10.1016/j.neubiorev.2019.10.015

    Article  CAS  PubMed  Google Scholar 

  50. Fu Z, Yang H, Xiao Y, Zhao G, Huang H (2012) The gamma-aminobutyric acid type B (GABA B) receptor agonist baclofen inhibits morphine sensitization by decreasing the dopamine level in rat nucleus accumbens. Behav Brain Funct 8:20. https://doi.org/10.1186/1744-9081-8-20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Yamauchi N, Shibasaki T, Wakabayashi I, Demura H (1997) Brain β-endorphin and other opioids are involved in restraint stress- induced stimulation of the hypothalamic-pituitary-adrenal axis, the sympathetic nervous system, and the adrenal medulla in the rat. Brain Res 777:140–146. https://doi.org/10.1016/S0006-8993(97)01097-4

    Article  CAS  PubMed  Google Scholar 

  52. Contet C, Gavériaux-Ruff C, Matifas A, Caradec C, Champy MF, Kieffer BL (2006) Dissociation of analgesic and hormonal responses to forced swim stress using opioid receptor knockout mice. Neuropsychopharmacology 31:1733–1744. https://doi.org/10.1038/sj.npp.1300934

    Article  CAS  PubMed  Google Scholar 

  53. Deroche V, Marinelli M, Maccari S, Le Moal M, Simon H, Piazza PV (1995) Stress-induced sensitization and glucocorticoids. I. Sensitization of dopamine-dependent locomotor effects of amphetamine and morphine depends on stress-induced corticosterone secretion. J Neurosci 15:7181–7188. https://doi.org/10.1523/jneurosci.15-11-07181.1995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Valenti O, Gill KM, Grace AA (2012) Different stressors produce excitation or inhibition of mesolimbic dopamine neuron activity: Response alteration by stress pre-exposure. Eur J Neurosci 35:1312–1321. https://doi.org/10.1111/j.1460-9568.2012.08038.x

    Article  PubMed  PubMed Central  Google Scholar 

  55. Lataster J, Collip D, Ceccarini J, Haas D, Booij L, van Os J, Pruessner J, Van Laere K, Myin-Germeys I (2011) Psychosocial stress is associated with in vivo dopamine release in human ventromedial prefrontal cortex: a positron emission tomography study using [18F] fallypride. Neuroimage 58:1081–1089

    Article  PubMed  Google Scholar 

  56. Stöhr T, Almeida OFX, Landgraf R, Shippenberg TS, Holsboer F, Spanagel R (1999) Stress- and corticosteroid-induced modulation of the locomotor response to morphine in rats. Behav Brain Res 103:85–93. https://doi.org/10.1016/S0166-4328(99)00027-3

    Article  PubMed  Google Scholar 

  57. Costa A, Smeraldi A, Tassorelli C, Greco R, Nappi G (2005) Effects of acute and chronic restraint stress on nitroglycerin-induced hyperalgesia in rats. Neurosci Lett 383:7–11

    Article  CAS  PubMed  Google Scholar 

  58. Borgkvist A, Valjent E, Santini E, Hervé D, Girault JA, Fisone G (2008) Delayed, context- and dopamine D1 receptor-dependent activation of ERK in morphine-sensitized mice. Neuropharmacology 55:230–237. https://doi.org/10.1016/j.neuropharm.2008.05.028

    Article  CAS  PubMed  Google Scholar 

  59. Stout KA, Dunn AR, Lohr KM, Alter SP, Cliburn RA, Guillot TS, Miller GW (2016) Selective Enhancement of Dopamine Release in the Ventral Pallidum of Methamphetamine-Sensitized Mice. ACS Chem Neurosci 7:1364–1373. https://doi.org/10.1021/acschemneuro.6b00131

    Article  CAS  PubMed  Google Scholar 

  60. Listos J, Łupina M, Talarek S, Mazur A, Orzelska-Górka J, Kotlińska J (2019) The mechanisms involved in morphine addiction: an overview. Int J Mol Sci 20:4302. https://doi.org/10.3390/ijms20174302

    Article  CAS  PubMed Central  Google Scholar 

  61. Perrotti LI, Hadeishi Y, Ulery PG, Barrot M, Monteggia L, Duman RS, Nestler EJ (2004) Induction of ΔFosB in reward-related brain structures after chronic stress. J Neurosci 24:10594–10602. https://doi.org/10.1523/JNEUROSCI.2542-04.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Vanderschuren LJMJ, Kalivas PW (2000) Alterations in dopaminergic and glutamatergic transmission in the induction and expression of behavioral sensitization: a critical review of preclinical studies. Psychopharmacology (Berl) 151:99–120. https://doi.org/10.1007/s002130000493

    Article  CAS  Google Scholar 

  63. Kelz MB, Chen J, Carlezon WA, Whisler K, Gilden L, Beckmann AM, Steffen C, Zhang YJ, Marotti L, Self DW, Tkatch T, Baranauskas G, Surmeler DJ, Neve RL, Duman RS, Picciotto MR, Nestler EJ (1999) Expression of the transcription factor ΔFosB in the brain controls sensitivity to cocaine. Nature 401:272–276. https://doi.org/10.1038/45790

    Article  CAS  PubMed  Google Scholar 

  64. Pitchers KK, Vialou V, Nestler EJ, Laviolette SR, Lehman MN, Coolen LM (2013) Natural and drug rewards act on common neural plasticity mechanisms with ΔFosB as a key mediator. J Neurosci 33:3434–3442. https://doi.org/10.1523/JNEUROSCI.4881-12.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Lohman RJ, Liu L, Morris M, O’Brien TJ (2005) Validation of a method for localised microinjection of drugs into thalamic subregions in rats for epilepsy pharmacological studies. J Neurosci Methods 146:191–197. https://doi.org/10.1016/j.jneumeth.2005.02.008

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The Vice-Chancellor for Research & Technology of Shahid Beheshti University of Medical Sciences supported this work (Grant No. 98-21484-1398/12/20). Also, the authors would like to appreciate the Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, for their cooperation in carrying out this study.

Author information

Authors and Affiliations

Authors

Contributions

AH: Conceptualization, Methodology, Writing-Reviewing, and Editing. EC: Data curation, Data analysis, Writing-Original draft preparation. GF: Writing-Original draft preparation. MR: Writing-Original draft preparation, Writing-Reviewing, and Editing. MZ: Supervision. All authors critically reviewed content and approved the final version for publication.

Corresponding author

Correspondence to Abbas Haghparast.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

(DOCX 17 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Charmchi, E., Faramarzi, G., Rashvand, M. et al. Restraint Stress Potentiated Morphine Sensitization: Involvement of Dopamine Receptors within the Nucleus Accumbens. Neurochem Res 46, 648–659 (2021). https://doi.org/10.1007/s11064-020-03199-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-020-03199-5

Keywords

Navigation