Skip to main content
Log in

Anxiolytic and Anti-depressive Like Effects of Translocator Protein (18 kDa) Ligand YL-IPA08 in a Rat Model of Postpartum Depression

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Translocator protein 18 kDa (TSPO) is mainly distributed in the outer mitochondrial membrane of steroid-synthesizing cells in the central and peripheral nervous systems. It mediates cholesterol transportation across the phospholipid membrane, which is a prerequisite for neurosteroid synthesis. Though the ligand of TSPO has clinical value in the diagnosis and treatment of neuropsychiatric disorders, the pharmacological study of TSPO for anti-postpartum depression has not been reported. In this study, the classical method of reproductive hormone withdrawal was used to construct a rat model of postpartum depression (PPD). The effect of YL-IPA08, a new ligand compound of TSPO, on PPD was evaluated using multiple behavioral tests at progressive time points. Additionally, real-time quantitative PCR, Western-blotting and an enzyme linked immunosorbent assay were conducted to elucidate the potential molecular mechanism of such effect. We report that the levels of TSPO and neurosteroids in the hippocampus and prefrontal cortex were significantly decreased in PPD rats compared to healthy controls. After 3 weeks of drug treatment, the levels of TSPO and neurosteroids in the hippocampus of PPD rats were increased, and anxiety and depressive like behaviors were alleviated. Meanwhile, compared with sertraline treatment, a positive control in this study, YL-IPA08 treatment had a shorter onset time. Our results suggest that the anxiolytic and anti-depressive activity of YL-IPA08 has significant value in the treatment of PPD and that TSPO may be a potential new target for the treatment of PPD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

TSPO:

Translocator protein (18 kDa)

PPD:

Postpartum depression

HPA axis:

Hypothalamic-pituitary-adrenal axis

SSRIs:

Selective serotonin reuptake inhibitors

OVX:

Ovariectomy

HSP:

Hormone simulated pregnancy

E:

Estradiol

P:

Progesterone

Ser:

Sertraline

OFT:

Open field test

EPM:

Elevated plus maze

SPT:

Sucrose preference test

FST:

Forced swimming test

ACTH:

Adrenocorticotropic

CORT:

Corticosterone

CRH:

Corticotropin releasing hormone

GABA:

G-aminobutyric acid

CBR:

Central benzodiazepine receptor

References

  1. Galea LAM, Wide JK, Barr AM (2001) Estradiol alleviates depressive-like symptoms in a novel animal model of postpartum depression. Behav Brain Res 122:1–9

    Article  CAS  PubMed  Google Scholar 

  2. Chen L, Wang X, Ding Q, Shan N, Qi H (2019) Development of postpartum depression in pregnant women with preeclampsia: a retrospective study. Biomed Res Int. https://doi.org/10.1155/2019/9601476

    Article  PubMed  PubMed Central  Google Scholar 

  3. Mastorakos G, Ilias I (2010) Maternal and fetal hypothalamic-pituitary-adrenal axes during pregnancy and postpartum. Ann N Y Acad Sci 997:136–149

    Article  Google Scholar 

  4. Zhang LM, Zhao N, Guo WZ, Jin ZL, Qiu ZK, Chen HX, Xue R, Zhang YZ, Yang RF, Li YF (2014) Antidepressant-like and anxiolytic-like effects of YL-IPA08, a potent ligand for thetranslocator protein (18kDa). Neuropharmacology 81:116–125

    Article  CAS  PubMed  Google Scholar 

  5. Gao SY, Wu QJ, Sun C, Zhang TN, Shen ZQ, Liu CX, Gong TT, Xu X, Ji C, Huang DH, Chang Q, Zhao YH (2018) Selectiveserotonin reuptake inhibitor use during early pregnancy and congenitalmalformations: a systematic review and meta-analysis of cohort studies of morethan 9 million births. BMC Med 16:205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Zorumski CF, Paul SM, Izumi Y, Covey DF, Mennerick S (2013) Neurosteroids, stress and depression: potential therapeutic opportunities. Neurosci Biobehav Rev 37:109–122

    Article  CAS  PubMed  Google Scholar 

  7. Hellgren C, Åkerud H, Skalkidou A, Bäckström T, Sundström-Poroma I (2014) Low serum allopregnanolone is associated with symptoms of depression in late pregnancy. Neuropsychobiology 69:147–153

    Article  CAS  PubMed  Google Scholar 

  8. Osborne LM, Gispen F, Sanyal A, Yenokyan G, Meilman S, Payne JL (2017) Lower allopregnanolone during pregnancy predicts postpartum depression: an exploratory study. Psychoneuroendocrinology 79:116–121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Reddy DS (2010) Neurosteroids: endogenous role in the human brain and therapeutic potentials. Prog Brain Res 186:113–137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Papadopoulos V, Amri H, Boujrad N, Cascio C, Culty M, Garnier M, Hardwick M, Li H, Vidic B, Brown AS, Reversa JL, Bernassau JM, Drieu K (1997) Peripheral benzodiazepine receptor in cholesterol transport and steroidogenesis. Steroids 62:21–28

    Article  CAS  PubMed  Google Scholar 

  11. Atsuko K, Kiyoshi F (2008) Involvement of neurosteroids in the anxiolytic-like effects of AC-5216 in mice. Pharmacol Biochem Behav 89:171–178

    Article  Google Scholar 

  12. Pinna G (2010) In a mouse model relevant for post-traumatic stress disorder, selective brain steroidogenic stimulants (SBSS) improve behavioral deficits by normalizing allopregnanolone biosynthesis. Behav Pharmacol 21:438–450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Mizoguchi K, Ishige A, Aburada M, Tabira T (2003) Chronic stress attenuates glucocorticoid negative feedback: involvement of the prefrontal cortex and hippocampus. Neuroscience 119:887–897

    Article  CAS  PubMed  Google Scholar 

  14. Navarre BM, Laggart JD, Craft RM (2010) Anhedonia in postpartum rats. Physiol Behav 99:59–66

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Li XB, Liu A, Yang L, Zhang K, Wu YM, Zhao MG, Liu SB (2018) Antidepressant-like effects of translocator protein (18 kDa) ligand ZBD-2 in mouse models of postpartum depression. Mol Brain 11:12

    Article  PubMed  PubMed Central  Google Scholar 

  16. Schiller CE, Meltzer-Brody S, Rubinow DR (2015) The role of reproductive hormones in postpartum depression. CNS Spectr 20:48–59

    Article  PubMed  Google Scholar 

  17. Stoffel EC, Craft RM (2004) Ovarian hormone withdrawal-induced “depression”in female rats. Physiol Behav 83:505–513

    Article  CAS  PubMed  Google Scholar 

  18. Green AD, Barr AM, Galea LAM (2009) Role of estradiol withdrawal in ‘anhedonic’ sucrose consumption: a model of postpartum depression. Physiol Behav 97:259–265

    Article  CAS  PubMed  Google Scholar 

  19. Suda S, Segi-Nishida E, Newton SS, Duman RS (2008) A postpartum model in rat: behavioral and gene expression changes induced by ovarian steroid deprivation. Biol Psychiatry 64:311–319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Biaggi A, Conroy S, Pawlby S, Pariante CM (2016) Identifying the women at risk of antenatal anxiety and depression: a systematic review. J Affect Disord 191:62–77

    Article  PubMed  PubMed Central  Google Scholar 

  21. Bymaster FP, Zhang W, Carter PA, Shaw J, Chernet E et al (2002) Fluoxetine, but not other selective serotonin uptake inhibitors, increases norepinephrine and dopamine extracellular levels in prefrontal cortex. Psychopharmacology 160(4):353–361

    Article  CAS  PubMed  Google Scholar 

  22. Andrews PW, Bharwani A, Lee KR, Fox M, Thomson JA (2015) Is serotonin an upper or a downer? The evolution of the serotonergic system and its role in depression and the antidepressant response. Neurosci Biobehav Rev 51:164–188

    Article  CAS  PubMed  Google Scholar 

  23. Harmer CJ, Duman RS, Cowen PJ (2017) How do antidepressants work? New perspectives for refining future treatment approaches. Lancet Psychiatry 4(5):409–418

    Article  PubMed  PubMed Central  Google Scholar 

  24. Popoli M, Yan Z, McEwen BS, Sanacora G (2011) The stressed synapse: the impact of stress and glucocorticoids on glutamate transmission. Nat Rev Neurosci 13(1):22–37

    Article  PubMed  PubMed Central  Google Scholar 

  25. Schüle C, Nothdurfter C, Rupprecht R (2014) The role of allopregnanolone in depression and anxiety. Prog Neurobiol 113:79–87

    Article  PubMed  Google Scholar 

  26. Maguire J (2019) Neuroactive steroids and GABAergic involvement in the neuroendocrine dysfunction associated with major depressive disorder and postpartum depression. Front Cell Neurosci 13(2019):00083

    Article  CAS  Google Scholar 

  27. Abelli M, Chelli B, Costa B, Lari L, Cardini A, Gesi C, Muti M, Lucacchini A, Martini C, Cassano GB, Pini S (2010) Reductions in platelet 18 kDa translocator protein density are associated with adult separation anxiety in patients with bipolar disorder. Neuropsychobiology 62:98–103

    Article  CAS  PubMed  Google Scholar 

  28. Li D, Zheng J, Wang M, Feng L, Liu Y, Yang N, Zuo P (2016) Wuling powder prevents the depression-like behavior in learned helplessness mice model through improving the TSPO mediated-mitophagy. J Ethnopharmacol 186:181–188

    Article  PubMed  Google Scholar 

  29. Rupprecht R, Papadopoulos V, Rammes G, Baghai TC, Fan J, Akula N, Groyer G, Adams D, Schumacher M (2010) Translocator protein (18 kDa) (TSPO) as a therapeutic target for neurological and psychiatric disorders. Nat Rev Drug Discov 9(12):971–988

    Article  CAS  Google Scholar 

  30. Deligiannidis KM, Kroll-Desrosiers AR, Mo S, Nguyen HP, Svenson A, Jaitly N, Hall JE, Barton BA, Rothschild AJ, Shaffer SA (2016) Peripartum neuroactive steroid and γ-aminobutyric acid profiles in women at-risk for postpartum depression. Psychoneuroendocrinology 70:98–107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Jamie M (2014) Stress-induced plasticity of GABAergic inhibition. Front Cell Neurosci 8:157

    Google Scholar 

  32. Zhang LM, Wang YL, Liu YQ, Xue R, Zhang YZ, Yang RF, Li YF (2017) Antidepressant-like effects of YL-IPA08, a potent ligand for the translocator protein (18 kDa) in chronically stressed rats. Neuropharmacology 113:567–575

    Article  CAS  PubMed  Google Scholar 

  33. Nothdurfter C, Rammes G, Baghai TC, Schüle C, Schumacher M, Papadopoulos V, Rupprecht R (2012) Translocator protein (18 kDa) as a target for novel anxiolytics with a favourable side-effect profile. J Neuroendocrinol 24(1):82–92

    Article  CAS  PubMed  Google Scholar 

  34. Beckley EH, Finn DA (2007) Inhibition of progesterone metabolism mimics the effect of progesterone withdrawal on forced swim test immobility. Pharmacol Biochem Behav 87(4):412–419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. O'Keane V, Lightman S, Patrick K, Marsh M, Papadopoulos AS, Pawlby S, Seneviratne G, Taylor A, Moore R (2011) Changes in the maternal hypothalamic-pituitary-adrenal axis during the early puerperium may be related to the postpartum “blues”. Neuroendocrinol 23(11):1149–1155

    Article  CAS  Google Scholar 

  36. Sarkar J, Wakefield S, MacKenzie G, Moss SJ, Maguire J (2011) Neurosteroidogenesis is required for the physiological response to stress: role of neurosteroid-sensitive GABAA receptors. Neurosci 31(50):18198–18210

    Article  CAS  Google Scholar 

  37. Patchev VK, Hassan AH, Holsboer DF, Almeida OF (1996) The neurosteroid tetrahydroprogesterone attenuates the endocrine response to stress and exerts glucocorticoid-like effects on vasopressin gene transcription in the rat hypothalamus. Neuropsychopharmacology 15(6):533–540

    Article  CAS  PubMed  Google Scholar 

  38. Li L, Wang W, Zhang LM, Jiang XY, Sun SZ, Sun LJ, Guo Y, Gong J, Zhang YZ, Wang HL, Li YF (2017) Overexpression of the 18 kDa translocator protein (TSPO) in the hippocampal dentate gyrus produced anxiolytic and antidepressant-like behavioural effects. Neuropharmacology 125:117–128

    Article  CAS  PubMed  Google Scholar 

  39. Lima-Maximino MG, Cueto-Escobedo J, Rodríguez-Landa JF, Maximino C (2018) FGIN-1-27, an agonist at translocator protein 18 kDa (TSPO), produces antianxiety and anti-panic effects in non-mammalian models. Pharmacol Biochem Behav 171:66–73

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was supported by the National Natural Science Foundation of China (No. 817010172), Beijing Municipal Science & Technology Comission (No. Z181100001718002) and PLA Youth Training Project for Medical Science (16QNP002).

Author information

Authors and Affiliations

Authors

Contributions

PR and LM designed the research, data analysis, and wrote the manuscript. J-YW, HG and LS performed the behavioral tests. M-LG and Y-ZL participated in the molecular and cellular mechanisms of YL-IPA08. Y-QM performed the chemical synthesis of YL-IPA08. Y-FL and W-ZG contributed to the research design, data analysis, and manuscript revision. All authors reviewed the content and approved the final version of the manuscript.

Corresponding authors

Correspondence to Yun-Feng Li or Wen-Zhi Guo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, P., Ma, L., Wang, JY. et al. Anxiolytic and Anti-depressive Like Effects of Translocator Protein (18 kDa) Ligand YL-IPA08 in a Rat Model of Postpartum Depression. Neurochem Res 45, 1746–1757 (2020). https://doi.org/10.1007/s11064-020-03036-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-020-03036-9

Keywords

Navigation