Skip to main content
Log in

Effects of Modafinil on Clonic Seizure Threshold Induced by Pentylenetetrazole in Mice: Involvement of Glutamate, Nitric oxide, GABA, and Serotonin Pathways

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Epilepsy is the third most common chronic brain disorder. Modafinil is an awakening agent approved for narcolepsy. In addition to its clinical uses some reports revealed that modafinil was associated with some alterations in seizure threshold. The purpose of this study was to clarify the effect of acute administration of modafinil in clonic seizure threshold (CST) induced by pentylenetetrazole in mice and the involvement of glutamate, nitric oxide, gamma amino butyric acid (GABA), and serotonin systems in this feature. Modafinil at 80 and 150 mg/kg showed anti- and pro-convulsant effects respectively and expressed maximum anti- and pro-convulsant activities at 30 min after injection. Both modulatory effects were blunted by pretreatment of l-NAME [nonspecific nitric oxide synthase (NOS) inhibitor; 10 mg/kg, i.p.], 7-nitroindazole (a neuronal NOS inhibitor; 40 mg/kg, i.p.), and aminoguanidine (an inducible NOS inhibitor; 50 mg/kg, i.p.). Injection of the NOS precursor l-arginine (60 mg/kg, i.p.) before modafinil did not change the anti-convulsant effect, while thoroughly reversed the pro-convulsant one. Our experiments displayed that administration of diazepam (a GABAA receptor agonist; 0.02 mg/kg, i.p.) and MK-801 (a NMDA receptor antagonist; 0.05 mg/kg, i.p.) before different doses of modafinil significantly increased CST. Finally, pretreatment of citalopram (a selective serotonin reuptake inhibitor; 0.1 mg/kg, i.p.) did not modify the convulsant activities of modafinil. Therefore, nitric oxide system may mediate anti-convulsant activity, while glutamate, nitric oxide, and GABA pathways may involve in pro-convulsant property. Serotonin receptors have no role on convulsant effects of modafinil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Koda-Kimble MA, Young LY, Alldredge BK, Corelli RL, Ernst ME, Guglielmo BJ, Jacobson PA, Kradjan WA, Williams BR (2009) Applied therapeutics: the clinical use of drugs, seizure disorders, 2. Lippincott Williams & Wilkins, Philadelphia, pp 1387–1388

    Google Scholar 

  2. Brunton LL, Chabner BA, Knollmann BC (2006) Goodman and Gilman’s the pharmacological basis of therapeutics, pharmacotherapy of the epilepsies, 1. McGraw-Hill, New York, p 583

    Google Scholar 

  3. Hitiris N, Brodie MJ (2006) Modern antiepileptic drugs: guidelines and beyond. Curr Opin Neurol 19:175–180

    PubMed  Google Scholar 

  4. Vezzani A, Bartfai T, Bianchi M, Rossetti C, French J (2011) Therapeutic potential of new antiinflammatory drugs. Epilepsia 52:67–69

    Article  CAS  Google Scholar 

  5. Javadian N, Rahimi N, Javadi-Paydar M, Doustimotlagh AH, Dehpour AR (2016) The modulatory effect of nitric oxide in pro-and anti-convulsive effects of vasopressin in PTZ-induced seizures threshold in mice. Epilepsy Res 126:134–140

    Article  CAS  Google Scholar 

  6. Rahimi N, Sadeghzadeh M, Javadi-Paydar M, Heidary MR, Jazaeri F, Dehpour AR (2014) Effects of d-penicillamine on pentylenetetrazole-induced seizures in mice: involvement of nitric oxide/NMDA pathways. Epilepsy Behav 39:42–47

    Article  Google Scholar 

  7. Payandemehr B, Bahremand A, Rahimian R, Ziai P, Amouzegar A, Sharifzadeh M, Dehpour AR (2012) 5-HT3 receptor mediates the dose-dependent effects of citalopram on pentylenetetrazole-induced clonic seizure in mice: Involvement of nitric oxide. Epilepsy Res 101:217–227

    Article  CAS  Google Scholar 

  8. Khan GM, Smolders I, Lindekens H, Manil J, Ebinger G, Michotte Y (1999) Effects of diazepam on extracellular brain neurotransmitters in pilocarpine-induced seizures in rats. Eur J pharmacol 373:153–161

    Article  CAS  Google Scholar 

  9. Ballon JS, Feifel D (2006) A systematic review of modafinil: potential clinical uses and mechanisms of action. J Clin Psychiatry 67:554–566

    Article  CAS  Google Scholar 

  10. Minzenberg MJ, Carter CS (2008) Modafinil: a review of neurochemical actions and effects on cognition. Neuropsychopharmacol: Off Publ Am Coll Neuropsychopharmacol 33:1477–1502

    Article  CAS  Google Scholar 

  11. Fone KC, Nutt DJ (2005) Stimulants: use and abuse in the treatment of attention deficit hyperactivity disorder. Curr Opin Pharmacol 5:87–93

    Article  CAS  Google Scholar 

  12. Kumar R (2008) Approved and investigational uses of modafinil: an evidence-base review. Drugs 68:1803–1839

    Article  CAS  Google Scholar 

  13. Heal DJ, Cheetham SC, Smith SL (2009) The neuropharmacology of ADHD drugs in vivo: insights on efficacy and safety. Neuropharmacology 57:608–618

    Article  CAS  Google Scholar 

  14. Kane JM, D’Souza DC, Paktar AA, Youakim JM, Tiller JM, Yang R, Keefe RS (2010) Armodafinil as adjunctive therapy in adults with cognitive deficits associated with schizophrenia: a 4-week, double-blind, placebo-controlled study. J Clin Psychiatry 71:1475–1148

    Article  Google Scholar 

  15. Lindenmayer JP, Nasrallah H, Pucci M, James S, Citrome L (2013) A systematic review of psychostimulant treatment of negative symptoms of schizophrenia: challenges and therapeutic opportunities. Schizophr Res 147:241–252

    Article  Google Scholar 

  16. Peñaloza RA, Sarkar U, Claman DM, Omachi TA (2013) Trends in on-label and off-label modafinil use in a nationally representative sample. JAMA Intern Med 173:704–706

    Article  Google Scholar 

  17. Chen CR, Qu WM, Qiu MH, Xu XH, Yao MH, Urade Y, Haung ZL (2007) Modafinil exerts a dose-dependent antiepileptic effect mediated by adrenergic α1 and histaminergic H1 receptors in mice. Neuropharmacology 53:534–541

    Article  CAS  Google Scholar 

  18. Zolkowska D, Andres-mach M, Prisinzano TE, Baumann MH, Luszczki JJ (2015) Modafinil and its metabolites enhance the anticonvulsant action of classical antiepileptic drugs in the mouse maximal electroshock-induced seizure model. Psychopharmacology 232:2463–2479

    Article  CAS  Google Scholar 

  19. Artsy E, McCarthy DC, Hurwitz SH, Pavlova MK, Dworetzky BA, Woo Lee J (2012) Use of modafinil in patients with epilepsy. Epilepsy Behav 23:405–408

    Article  Google Scholar 

  20. Gupta R, Gupta LK, Bhattacharya SK (2014) Chronic administration of modafinil induces hyperalgesia in mice: Reversal by l-NG-nitro-arginine methyl ester and 7-nitroindazole. Eur J Pharmacol 736:95–100

    Article  CAS  Google Scholar 

  21. Gilbert ME (1988) The NMDA receptor antagonist, MK-801, suppresses limbic kindling and kindled seizures. Brain Res 463:90–99

    Article  CAS  Google Scholar 

  22. Waxman EA, Lynch DR (2005) N-methyl-d-aspartate receptor subtypes: multiple roles in excitotoxicity and neurological disease. Neuroscience 11(1):37–49

    Article  CAS  Google Scholar 

  23. Mohammad Jafari R, Ghahremani MH, Rahimi N, Shadboorestan A, Rashidian A, Esmaeili J, Ejtemaei Mehr S, Dehpour AR (2018) The anticonvulsant activity and cerebral protection of chronic lithium chloride via NMDA receptor/nitric oxide and phospho-ERK. Brain Res Bull 137:1–9

    Article  CAS  Google Scholar 

  24. Homayoun H, Khavandgar S, Namiranian K, Gaskari SA, Dehpour AR (2002) The role of nitric oxide in anticonvulsant and proconvulsant effects of morphine in mice. Epilepsy Res 48:33–41

    Article  CAS  Google Scholar 

  25. Szyndler J, Maciejak kolosowskaK, Chmielewska N, Skorzewska A, Daszczuk P, Płaznik A (2017) Altered expression of GABA-A receptor subunits in hippocampus of PTZ-kindled rats. Pharmacol Rep 17:14–21

    Google Scholar 

  26. Gholipour T, Rasouli A, Jabbarzadeh A, Ghazi Nezami B, Riazi K, Sharifzadeh M, Dehpour AR (2009) The interaction of sildenafil with the anticonvulsant effect of diazepam. Eur J Pharmacol 617:79–83

    Article  CAS  Google Scholar 

  27. Tecott LH, Sun LM, Akana SF, Strack AM, Lowenstein DH, Dallman MF, Julius D (1995) Eating disorder and epilepsy in mice lacking 5-HT2c serotonin receptors. Nature 374:542–546

    Article  CAS  Google Scholar 

  28. Loscher W, Honack D, Fassbender CP, Nolting B (1991) The role of technical, biological and pharmacological factors in the laboratory evaluation of anticonvulsant drugs. III Pentylenetetrazole seizure models. Epilepsy Res 8:171–189

    Article  CAS  Google Scholar 

  29. Swinyard EA, Kupferberg HJ (1985) Antiepileptic drugs: detection, quantification, and evaluation. Fed Proc 44:2629–2633

    CAS  PubMed  Google Scholar 

  30. Khavandgar S, Homayoun H, Dehpour AR (2002) The role of nitric oxide in the proconvulsant effect of δ-opioid agonist SNC80 in mice. Neurosci Lett 329:237–239

    Article  CAS  Google Scholar 

  31. Hassanipour M, Shirzadian A, Boojar MM, Abkhoo A, Abkhoo A, Delazar S, Amiri S, Rahimi N, Ostadhadi S, Dehpour AR (2016) Possible involvement of nitrergic and opioidergic systems in the modulatory effect of acute chloroquine treatment on pentylenetetrazol induced convulsions in mice. Brain Res Bull 121:124–130

    Article  CAS  Google Scholar 

  32. Rahimi N, Hassanipour M, Allahabadi NS, Sabbaghziarani F, Yazdanparast M, Dehpour AR (2018) Cirrhosis induced by bile duct ligation alleviates acetic acid intestinal damages in rats: Involvements of nitrergic and opioidergic systems. Pharmacol Rep 70(3):426–433

    Article  CAS  Google Scholar 

  33. Swanson JM, Greenhill LL, Lopez FA, Sedillo A, Earl CQ, Jiang JG, Biederman J (2006) Modafinil film-coated tablets in children and adolescents with attention-deficit/hyperactivity disorder: results of a randomized, double-blind, placebo-controlled, fixed-dose study followed by abrupt discontinuation. J Clin Psychiatr 67:137–147

    Article  CAS  Google Scholar 

  34. Ozsoy S, Aydin D, Ekici F (2015) Effects of modafinil on pentylenetetrazol-induced convulsive epilepsy. Bratisl Lek Listy 116:162–166

    CAS  Google Scholar 

  35. Ivanenko A, Tauman R, Gozal D (2003) Modafinil in the treatment excessive daytime sleepiness in children. Sleep Med 4:579–582

    Article  Google Scholar 

  36. Jha A, Weintraub A, Allshouse A, Morey C, Cusick C, Kittelson J, Harrison-Felix C, Whiteneck G, Gerber D (2008) A randomized trial of modafinil for the treatment of fatigue and excessive daytime sleepiness in individuals with chronic traumatic brain injury. J Head Trauma Rehabil 23:52–63

    Article  Google Scholar 

  37. Buisson A, Lakhmeche N, Verrecchia C, Plotkine M, Boulu RG (1993) Nitric oxide: an endogenous anticonvulsant substance. Neuroreport 4:444–446

    Article  CAS  Google Scholar 

  38. Starr MS, Starr BS (1993) Paradoxical facilitation of pilocarpine-induced seizures in the mouse by MK-801 and the nitric oxide synthesis inhibitor l-NAME. Pharmacol Biochem Behav 45:321–325

    Article  CAS  Google Scholar 

  39. Theard MA, Baughman VL, Wang Q, Pelligrino DA, Albrecht RF (1995) The role of nitric oxide in modulating brain activity and blood flow during seizure. Neuroreport 6(6):921–924

    Article  CAS  Google Scholar 

  40. Mülsch A, Busse R, Mordvintcev PI, Vanin AF, Nielsen EO, Scheel-Krüger J et al (1994) Nitric oxide promotes seizure activity in kainate-treated rats. Neuroreport 5:2325–2328

    Article  Google Scholar 

  41. Riazi K, Roshanpour M, Rafiei-Tabatabaei N, Homayoun H, Ebrahimi F, Dehpour AR (2006) The proconvulsant effect of sildenafil in mice: role of nitric oxide–cGMP pathway. Br J Pharmacol 147:935–943

    Article  CAS  Google Scholar 

  42. Osonoe K, Mori N, Suzuki K, Osonoe M (1994) Antiepileptic effects of inhibitors of nitric oxide synthase examined in pentylenetetrazol-induced seizures in rats. Brain Res 663:338–340

    Article  CAS  Google Scholar 

  43. Licinio J, Prolo P, McCann SM, Wong ML (1999) Brain iNOS: current understanding and clinical implications. Mol Med Today 5:225–232

    Article  CAS  Google Scholar 

  44. Hassanipour M, Rajai N, Rahimi N, Fatemi I, Jalali M, Akbarian R, Shahabaddini A, Nazari A, Amini-Khoei H, Dehpour AR (2018) Sumatriptan effects on morphine-induced antinociceptive tolerance and physical dependence: The role of nitric oxide. Eur J Pharmacol 2018 835:52–60

    Article  CAS  Google Scholar 

  45. Dawson T, Synder Sh (1994) Gases as biological messengers: nitric oxide and carbon monoxide in the brain. J Neurosci 14:5147–5159

    Article  CAS  Google Scholar 

  46. Del.Bel EA, Oliveira PR, Oliveira JAC, Mishra PK, Jobe PC, Garcia-Cairasco N (1997) Anticonvulsant and proconvulsant roles of nitric oxide in experimental epilepsy models. Braz J Med Biol Res 30:971–979

    Article  CAS  Google Scholar 

  47. Ferraro L, Antonelli T, O’Conner WT, Tanganelli S, Rambert F, Fuxe K (1997) The antinarcoleptic drug modafinil increases glutamate release in thalamic areas and hippocampus. Neuroreport 8:2883–2887

    Article  CAS  Google Scholar 

  48. Ferraro L, Antonielli T, O’Connor WT, Tanganelli S, Rambert FA, Fuxe K (1998) the effects of modafinil on striatal, pallidal and nigral GABA and glutamate release in the conscious rat: evidence for a preferential inhibition of striato-pallidal GABA transmission. Neurosci Lett 253:135–138

    Article  CAS  Google Scholar 

  49. Ferraro L, Antonelli T, Tanganelli S, O’Connor WT, Perez de la Mora M, Mendez-Franco J, Rambert FA, Fuxe K (1999) The vigilance promoting drug modafinil increases extracellular glutamate levels in the medial preoptic area and the posterior hypothalamus of the conscious rat: prevention by local GABAA receptor blockade. Neuropsychopharmacology 20:346–356

    Article  CAS  Google Scholar 

  50. Ronne-Engström E, Hillered L, Flink R, Spännare B, Ungerstedt U, Carlson H (1992) Intracerebral microdialysis of extracellular amino acids in the human epileptic focus. J Cereb Blood Flow Metab 12:873–876

    Article  Google Scholar 

  51. During M, Spencer D (1993) Extracellular hippocampal glutamate and spontaneous seizure in the conscious human brain. Lancet 341:1607–1610

    Article  CAS  Google Scholar 

  52. Chapman AG (1998) Glutamate receptors in epilepsy. Prog Brain Res 116:371–383

    Article  CAS  Google Scholar 

  53. Chapman AG (2000) Glutamate and epilepsy. J Nutr 130:1043S–1043S5S

    Article  CAS  Google Scholar 

  54. Chapman A (1995) Excitatory neurotransmission and antiepileptic drug development: a status report. Recent Adv Epilepsy 6:1–21

    Google Scholar 

  55. Meldrum BS (1995) Excitatory amino acid receptors and their role in epilepsy and cerebral ischemia. Ann N Y Acad Sci 757:492–505

    Article  CAS  Google Scholar 

  56. Rogawski MA (1992) The NMDA receptor, NMDA antagonists and epilepsy therapy. Drugs 44:279–292

    Article  CAS  Google Scholar 

  57. Pfluger P, Coelho VR, Renger GG, da Silva LL, Maerinez K, Fonseca A, Viau CM, Pereira P (2018) Neuropharmacological profile of gamma-decanolactone on chemically-induced seizure in mice. Cent Nerv Syst Agents Med Chem 11:162–169

    CAS  Google Scholar 

  58. Song SH, Fajol A, Chen Y, Ren B, Shi S (2018) Anticonvulsive effects of protodioscin against pilocarpine-induced epilepsy. Eur J Pharmacol 833:237–246

    Article  CAS  Google Scholar 

  59. Li B, Wang L, Sun ZH, Zhou Y, Shao D, Zhao J, Song Y, Lv J, Dong X, Liu Ch, Wang P, Zhang X, Cui R (2014) The anticonvulsant effects of SR 57227 on pentylenetetrazole-induced seizure in mice. Plos one 9:1–6

    Google Scholar 

  60. Oakley JC, Cho AR, Cheah CS, Scheuer T, Catteral WA (2013) Synergistic GABA-enhancing therapy against seizures in a mouse model of Dravet Syndrome. J Pharmacol Exp Ther 345:215–224

    Article  CAS  Google Scholar 

  61. Gholipour T, Ghasemi M, Riazi K, Ghaffarpour M, Dehpour AR (2010) Seizure susceptibility by alteration through 5-HT3 receptor: Modulation by nitric oxide. Seizure 19:17–22

    Article  Google Scholar 

Download references

Acknowledgements

The study was supported by a grant from Experimental Medicine Research Center, Tehran University of Medical Sciences (Grant No. 96-02-30-35219). This work was supported by a grant (96002757) from Iran National Science Foundation (INSF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmad Reza Dehpour.

Ethics declarations

Conflict of interests

The authors declares that they have no conflict of interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bahramnjead, E., Kazemi Roodsari, S., Rahimi, N. et al. Effects of Modafinil on Clonic Seizure Threshold Induced by Pentylenetetrazole in Mice: Involvement of Glutamate, Nitric oxide, GABA, and Serotonin Pathways. Neurochem Res 43, 2025–2037 (2018). https://doi.org/10.1007/s11064-018-2623-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-018-2623-7

Keywords

Navigation