Skip to main content

Advertisement

Log in

Ginsenoside Rg1 Decreases Oxidative Stress and Down-Regulates Akt/mTOR Signalling to Attenuate Cognitive Impairment in Mice and Senescence of Neural Stem Cells Induced by d-Galactose

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Adult hippocampal neurogenesis plays a pivotal role in learning and memory. The suppression of hippocampal neurogenesis induced by an increase of oxidative stress is closely related to cognitive impairment. Neural stem cells which persist in the adult vertebrate brain keep up the production of neurons over the lifespan. The balance between pro-oxidants and anti-oxidants is important for function and surviving of neural stem cells. Ginsenoside Rg1 is one of the most active components of Panax ginseng, and many studies suggest that ginsenosides have antioxidant properties. This research explored the effects and underlying mechanisms of ginsenoside Rg1 on protecting neural stem cells (NSCs) from oxidative stress. The sub-acute ageing of C57BL/6 mice was induced by subcutaneous injection of d-gal (120 mg kg−1 day−1) for 42 day. On the 14th day of d-gal injection, the mice were treated with ginsenoside Rg1 (20 mg kg−1 day−1, intraperitoneally) or normal saline for 28 days. The study monitored the effects of Rg1 on proliferation, senescence-associated and oxidative stress biomarkers, and Akt/mTOR signalling pathway in NSCs. Compared with the d-gal group, Rg1 improved cognitive impairment induced by d-galactose in mice by attenuating senescence of neural stem cells. Rg1 also decreased the level of oxidative stress, with increased the activity of superoxide dismutase and glutathione peroxidase in vivo and in vitro. Rg1 furthermore reduced the phosphorylation levels of protein kinase B (Akt) and the mechanistic target of rapamycin (mTOR) and down-regulated the levels of downstream p53, p16, p21 and Rb in d-gal treated NSCs. The results suggested that the protective effect of ginsenoside Rg1 on attenuating cognitive impairment in mice and senescence of NSCs induced by d-gal might be related to the reduction of oxidative stress and the down-regulation of Akt/mTOR signaling pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Jung Y, Brack AS (2014) Cellular mechanisms of somatic stem cell aging. Curr Top Dev Biol 107:405–438. https://doi.org/10.1016/B978-0-12-416022-4.00014-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Kempermann G, Jessberger S, Steiner B, Kronenberg G (2004) Milestones of neuronal development in the adult hippocampus. Trends Neurosci 27(8):447–452. https://doi.org/10.1016/j.tins.2004.05.013

    Article  CAS  PubMed  Google Scholar 

  3. Varma VR, Tang X, Carlson MC (2016) Hippocampal sub-regional shape and physical activity in older adults. Hippocampus 24(10):22586

    Google Scholar 

  4. Imayoshi I, Sakamoto M, Ohtsuka T, Takao K, Miyakawa T, Yamaguchi M, Mori K, Ikeda T, Itohara S, Kageyama R (2008) Roles of continuous neurogenesis in the structural and functional integrity of the adult forebrain. Nat Neurosci 11(10):1153–1161

    Article  CAS  PubMed  Google Scholar 

  5. Shors TJ, Townsend DA, Zhao M, Kozorovitskiy Y, Gould E (2002) Neurogenesis may relate to some but not all types of hippocampal-dependent learning. Hippocampus 12(5):578–584. https://doi.org/10.1002/hipo.10103

    Article  PubMed  PubMed Central  Google Scholar 

  6. Guo J, Cheng X, Zhang L, Wang L, Mao Y, Tian G, Xu W, Wu Y, Ma Z, Qin J, Tian M, Jin G, Shi W, Zhang X (2017) Exploration of the Brn4-regulated genes enhancing adult hippocampal neurogenesis by RNA sequencing. J Neurosci Res. https://doi.org/10.1002/jnr.24043

    Google Scholar 

  7. Guo Q, Kim YN, Lee BH (2017) Protective effects of blueberry drink on cognitive impairment induced by chronic mild stress in adult rats. Nutr Res Pract 11(1):25–32. https://doi.org/10.4162/nrp.2017.11.1.25

    Article  PubMed  Google Scholar 

  8. Jiang DQ, Wang Y, Li MX, Ma YJ (2017) SIRT3 in neural stem cells attenuates microglia activation-induced oxidative stress injury through mitochondrial pathway. Front Cell Neurosci 11:7. https://doi.org/10.3389/fncel.2017.00007

    PubMed  PubMed Central  Google Scholar 

  9. Borodkina A, Shatrova A, Abushik P, Nikolsky N, Burova E (2014) Interaction between ROS dependent DNA damage, mitochondria and p38 MAPK underlies senescence of human adult stem cells. Aging 6(6):481–495. https://doi.org/10.18632/aging.100673

    Article  PubMed  PubMed Central  Google Scholar 

  10. Taniguchi Ishikawa E, Gonzalez-Nieto D, Ghiaur G, Dunn SK, Ficker AM, Murali B, Madhu M, Gutstein DE, Fishman GI, Barrio LC, Cancelas JA (2012) Connexin-43 prevents hematopoietic stem cell senescence through transfer of reactive oxygen species to bone marrow stromal cells. Proc Natl Acad Sci USA 109(23):9071–9076. https://doi.org/10.1073/pnas.1120358109

    Article  PubMed  PubMed Central  Google Scholar 

  11. Liu Q, Li Y, Jiang W, Zhou L, Song B, Liu X (2016) Inhibition of HSP90 promotes neural stem cell survival from oxidative stress through attenuating NF-kappaB/p65 Activation. Oxidat Med Cell Longev 2016:3507290. https://doi.org/10.1155/2016/3507290

    Google Scholar 

  12. Lu JM, Yao Q, Chen C (2009) Ginseng compounds: an update on their molecular mechanisms and medical applications. Curr Vasc Pharmacol 7(3):293–302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Cheng Y, Shen LH, Zhang JT (2005) Anti-amnestic and anti-aging effects of ginsenoside Rg1 and Rb1 and its mechanism of action. Acta Pharmacol Sin 26(2):143–149. https://doi.org/10.1111/j.1745-7254.2005.00034.x

    Article  CAS  PubMed  Google Scholar 

  14. Chen X, Zhang J, Fang Y, Zhao C, Zhu Y (2008) Ginsenoside Rg1 delays tert-butyl hydroperoxide-induced premature senescence in human WI-38 diploid fibroblast cells. J Gerontol A 63(3):253–264

    Article  Google Scholar 

  15. Yoo DY, Kim W, Kim IH, Nam SM, Chung JY, Choi JH, Yoon YS, Won MH, Hwang IK (2012) Combination effects of sodium butyrate and pyridoxine treatment on cell proliferation and neuroblast differentiation in the dentate gyrus of D-galactose-induced aging model mice. Neurochem Res 37(1):223–231. https://doi.org/10.1007/s11064-011-0597-9

    Article  CAS  PubMed  Google Scholar 

  16. Wei H, Cai Y, Chu J, Li C, Li L (2008) Temporal gene expression profile in hippocampus of mice treated with D-galactose. Cell Mol Neurobiol 28(5):781–794

    Article  CAS  PubMed  Google Scholar 

  17. Wei H, Li L, Song Q, Ai H, Chu J, Li W (2005) Behavioural study of the D-galactose induced aging model in C57BL/6J mice. Behav Brain Res 157(2):245–251

    Article  CAS  PubMed  Google Scholar 

  18. Ihunwo AO, Tembo LH, Dzamalala C (2016) The dynamics of adult neurogenesis in human hippocampus. Neural Regen Res 11(12):1869–1883. https://doi.org/10.4103/1673-5374.195278

    Article  PubMed  PubMed Central  Google Scholar 

  19. Zhu J, Mu X, Zeng J, Xu C, Liu J, Zhang M, Li C, Chen J, Li T, Wang Y (2014) Ginsenoside Rg1 prevents cognitive impairment and hippocampus senescence in a rat model of D-galactose-induced aging. PLoS ONE 9(6):e101291

    Article  PubMed  PubMed Central  Google Scholar 

  20. Lee BY, Han JA, Im JS, Morrone A, Johung K, Goodwin EC, Kleijer WJ, DiMaio D, Hwang ES (2006) Senescence-associated beta-galactosidase is lysosomal beta-galactosidase. Aging Cell 5(2):187–195

    Article  CAS  PubMed  Google Scholar 

  21. Kuhn HG, Dickinson-Anson H, Gage FH (1996) Neurogenesis in the dentate gyrus of the adult rat: age-related decrease of neuronal progenitor proliferation. J Neurosci 16(6):2027–2033

    CAS  PubMed  Google Scholar 

  22. Whalley LJ, Deary IJ, Appleton CL, Starr JM (2004) Cognitive reserve and the neurobiology of cognitive aging. Ageing Res Rev 3(4):369–382

    Article  PubMed  Google Scholar 

  23. Jiang H, Ju Z, Rudolph KL (2007) Telomere shortening and ageing. Z Gerontol Geriatr 40(5):314–324. https://doi.org/10.1007/s00391-007-0480-0

    Article  CAS  PubMed  Google Scholar 

  24. Kinsner A, Pilotto V, Deininger S, Brown GC, Coecke S, Hartung T, Bal-Price A (2005) Inflammatory neurodegeneration induced by lipoteichoic acid from Staphylococcus aureus is mediated by glia activation, nitrosative and oxidative stress, and caspase activation. J Neurochem 95(4):1132–1143

    Article  CAS  PubMed  Google Scholar 

  25. Del Rio D, Stewart AJ, Pellegrini N (2005) A review of recent studies on malondialdehyde as toxic molecule and biological marker of oxidative stress. Nutrition, metabolism, and cardiovascular diseases. NMCD 15(4):316–328. https://doi.org/10.1016/j.numecd.2005.05.003

    PubMed  Google Scholar 

  26. Marnett LJ (1999) Lipid peroxidation-DNA damage by malondialdehyde. Mutat Res 424(1–2):83–95

    Article  CAS  PubMed  Google Scholar 

  27. Pascual-Ahuir A, Manzanares-Estreder S, Proft M (2017) Pro- and antioxidant functions of the peroxisome-mitochondria connection and its impact on aging and disease. Oxidat Med Cell Longev 2017:9860841. https://doi.org/10.1155/2017/9860841

    Article  Google Scholar 

  28. Aubry JM, Schwald M, Ballmann E, Karege F (2009) Early effects of mood stabilizers on the Akt/GSK-3beta signaling pathway and on cell survival and proliferation. Psychopharmacology 205(3):419–429. https://doi.org/10.1007/s00213-009-1551-2

    Article  CAS  PubMed  Google Scholar 

  29. Ponnusamy M, Pang M, Annamaraju PK, Zhang Z, Gong R, Chin YE, Zhuang S (2009) Transglutaminase-1 protects renal epithelial cells from hydrogen peroxide-induced apoptosis through activation of STAT3 and AKT signaling pathways. Am J Physiol Renal Physiol 297(5):F1361–F1370. https://doi.org/10.1152/ajprenal.00251.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Maiese K, Chong ZZ, Wang S, Shang YC (2012) Oxidant stress and signal transduction in the nervous system with the PI 3-K, Akt, and mTOR cascade. Int J Mol Sci 13(11):13830–13866. https://doi.org/10.3390/ijms131113830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wan J, Liu T, Mei L, Li J, Gong K, Yu C, Li W (2013) Synergistic antitumour activity of sorafenib in combination with tetrandrine is mediated by reactive oxygen species (ROS)/Akt signaling. Br J Cancer 109(2):342–350. https://doi.org/10.1038/bjc.2013.334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Bijur GN, Jope RS (2003) Rapid accumulation of Akt in mitochondria following phosphatidylinositol 3-kinase activation. J Neurochem 87(6):1427–1435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Dong D, Cai GY, Ning YC, Wang JC, Lv Y, Hong Q, Cui SY, Fu B, Guo YN, Chen XM (2017) Alleviation of senescence and epithelial-mesenchymal transition in aging kidney by short-term caloric restriction and caloric restriction mimetics via modulation of AMPK/mTOR signaling. Oncotarget 8(10):16109–16121. https://doi.org/10.18632/oncotarget.14884

    PubMed  PubMed Central  Google Scholar 

  34. Lin Z, Gao M, Zhang X, Kim YS, Lee ES, Kim HK, Kim I (2005) The hypermethylation and protein expression of p16 INK4A and DNA repair gene O6-methylguanine-DNA methyltransferase in various uterine cervical lesions. J Cancer Res Clin Oncol 131(6):364–370. https://doi.org/10.1007/s00432-004-0657-5

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The work was supported by National Natural Science Foundation of China [No 30973818] and the Science Foundation of Ministry of Education of China [No 20125503110006].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaping Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, L., Yao, H., Chen, X. et al. Ginsenoside Rg1 Decreases Oxidative Stress and Down-Regulates Akt/mTOR Signalling to Attenuate Cognitive Impairment in Mice and Senescence of Neural Stem Cells Induced by d-Galactose. Neurochem Res 43, 430–440 (2018). https://doi.org/10.1007/s11064-017-2438-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-017-2438-y

Keywords

Navigation