Skip to main content
Log in

Fascin-1 Contributes to Neuropathic Pain by Promoting Inflammation in Rat Spinal Cord

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Neuropathic pain is a complicated clinical syndrome caused by heterogeneous etiology. Despite the fact that the underlying mechanisms remain elusive, it is well accepted that neuroinflammation plays a critical role in the development of neuropathic pain. Fascin-1, an actin-bundling protein, has been proved to be involved in the processing of diverse biological events including cellular development, immunity, and tumor invasion etc. Recent studies have shown that Fascin-1 participates in antigen presentation and the regulation of pro-inflammatory agents. However, whether Fascin-1 is involved in neuropathic pain has not been reported. In the present study we examined the potential role of Fascin-1 by using a rodent model of chronic constriction injury (CCI). Our results showed that Fascin-1 increased rapidly in dorsal root ganglions (DRG) and spinal cord (SC) after CCI. The increased Fascin-1 widely expressed in DRG, however, it localized predominantly in microglia, seldom in neuron, and hardly in astrocyte in the SC. Intrathecal injection of Fascin-1 siRNA not only suppressed the activation of microglia and the release of pro-inflammatory mediators, but also attenuated the mechanical allodynia and thermal hyperalgesia induced by CCI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Backonja MM (2003) Defining neuropathic pain. Anesth Analg 97:785–790

    Article  PubMed  Google Scholar 

  2. Zimmermann M (2001) Pathobiology of neuropathic pain. Eur J Pharmacol 429:23–37

    Article  CAS  PubMed  Google Scholar 

  3. Torrance N, Ferguson JA, Afolabi E, et al (2013) Neuropathic pain in the community: more under-treated than refractory? Pain 154:690–699

    Article  PubMed  PubMed Central  Google Scholar 

  4. Rice AS, Hill RG (2006) New treatments for neuropathic pain. Annu Rev Med 57:535–551

    Article  CAS  PubMed  Google Scholar 

  5. Finnerup NB, Attal N, Haroutounian S, McNicol E, Baron R, Dworkin RH, Gilron I, Haanpaa M, Hansson P, Jensen TS, Kamerman PR, Lund K, Moore A, Raja SN, Rice AS, Rowbotham M, Sena E, Siddall P, Smith BH, Wallace M (2015) Pharmacotherapy for neuropathic pain in adults: a systematic review and meta-analysis. Lancet Neurol 14:162–173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Mika J, Osikowicz M, Rojewska E, Korostynski M, Wawrzczak-Bargiela A, Przewlocki R, Przewlocka B (2009) Differential activation of spinal microglial and astroglial cells in a mouse model of peripheral neuropathic pain. Eur J Pharmacol 623:65–72

    Article  CAS  PubMed  Google Scholar 

  7. Raghavendra V, Tanga F, DeLeo JA (2003) Inhibition of microglial activation attenuates the development but not existing hypersensitivity in a rat model of neuropathy. J Pharmacol Exp Ther 306:624–630

    Article  CAS  PubMed  Google Scholar 

  8. Nakajima K, Kohsaka S (2001) Microglia: activation and their significance in the central nervous system. J Biochem 130:169–175

    Article  CAS  PubMed  Google Scholar 

  9. Vallejo R, Tilley DM, Vogel L, Benyamin R (2010) The role of glia and the immune system in the development and maintenance of neuropathic pain. Pain Pract Off J World Inst Pain 10:167–184

    Article  Google Scholar 

  10. Beggs S, Salter MW (2007) Stereological and somatotopic analysis of the spinal microglial response to peripheral nerve injury. Brain Behav Immun 21:624–633

    Article  CAS  PubMed  Google Scholar 

  11. Hains BC, Waxman SG (2006) Activated microglia contribute to the maintenance of chronic pain after spinal cord injury. J Neurosci Off J Soc Neurosci 26:4308–4317

    Article  CAS  Google Scholar 

  12. Sama MA, Mathis DM, Furman JL, Abdul HM, Artiushin IA, Kraner SD, Norris CM (2008) Interleukin-1beta-dependent signaling between astrocytes and neurons depends critically on astrocytic calcineurin/NFAT activity. J Biol Chem 283:21953–21964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Schubert P, Morino T, Miyazaki H, Ogata T, Nakamura Y, Marchini C, Ferroni S (2000) Cascading glia reactions: a common pathomechanism and its differentiated control by cyclic nucleotide signaling. Ann N Y Acad Sci 903:24–33

    Article  CAS  PubMed  Google Scholar 

  14. Leung L, Cahill CM (2010) TNF-alpha and neuropathic pain: a review. J Neuroinflamm 7:27

    Article  Google Scholar 

  15. Wei XH, Na XD, Liao GJ, Chen QY, Cui Y, Chen FY, Li YY, Zang Y, Liu XG (2013) The up-regulation of IL-6 in DRG and spinal dorsal horn contributes to neuropathic pain following L5 ventral root transection. Exp Neurol 241:159–168

    Article  CAS  PubMed  Google Scholar 

  16. Hashimoto Y, Kim DJ, Adams JC (2011) The roles of fascins in health and disease. J Pathol 224:289–300

    Article  CAS  PubMed  Google Scholar 

  17. Adams JC (2004) Roles of fascin in cell adhesion and motility. Curr Opin Cell Biol 16:590–596

    Article  CAS  PubMed  Google Scholar 

  18. De Arcangelis A, Georges-Labouesse E, Adams JC (2004) Expression of fascin-1, the gene encoding the actin-bundling protein fascin-1, during mouse embryogenesis. Gene Expr Patterns 4:637–643

    Article  PubMed  Google Scholar 

  19. Kureishy N, Sapountzi V, Prag S, Anilkumar N, Adams JC (2002) Fascins, and their roles in cell structure and function. BioEssays 24:350–361

    Article  CAS  PubMed  Google Scholar 

  20. Pak CW, Flynn KC, Bamburg JR (2008) Actin-binding proteins take the reins in growth cones. Nat Rev Neurosci 9:136–147

    Article  CAS  PubMed  Google Scholar 

  21. Kim JK, Lee SM, Suk K, Lee WH (2011) A novel pathway responsible for lipopolysaccharide-induced translational regulation of TNF-alpha and IL-6 expression involves protein kinase C and fascin. J Immunol 187:6327–6334

    Article  CAS  PubMed  Google Scholar 

  22. Serafini B, Rosicarelli B, Magliozzi R, Stigliano E, Capello E, Mancardi GL, Aloisi F (2006) Dendritic cells in multiple sclerosis lesions: maturation stage, myelin uptake, and interaction with proliferating T cells. J Neuropathol Exp Neurol 65:124–141

    Article  CAS  PubMed  Google Scholar 

  23. Almolda B, Gonzalez B, Castellano B (2010) Activated microglial cells acquire an immature dendritic cell phenotype and may terminate the immune response in an acute model of EAE. J Neuroimmunol 223:39–54

    Article  CAS  PubMed  Google Scholar 

  24. Bennett GJ, Xie YK (1988) A peripheral mononeuropathy in rat that produces disorders of pain sensation like those seen in man. Pain 33:87–107

    Article  CAS  PubMed  Google Scholar 

  25. Chaplan SR, Bach FW, Pogrel JW, Chung JM, Yaksh TL (1994) Quantitative assessment of tactile allodynia in the rat paw. J Neurosci Methods 53:55–63

    Article  CAS  PubMed  Google Scholar 

  26. Otto JJ (1994) Actin-bundling proteins. Curr Opin Cell Biol 6:105–109

    Article  CAS  PubMed  Google Scholar 

  27. Al-Alwan MM, Rowden G, Lee TD, West KA (2001) Fascin is involved in the antigen presentation activity of mature dendritic cells. J Immunol 166:338–345

    Article  CAS  PubMed  Google Scholar 

  28. Nagel J, Delandre C, Zhang Y, Forstner F, Moore AW, Tavosanis G (2012) Fascin controls neuronal class-specific dendrite arbor morphology. Development 139:2999–3009

    Article  CAS  PubMed  Google Scholar 

  29. Meller R, Thompson SJ, Lusardi TA, Ordonez AN, Ashley MD, Jessick V, Wang W, Torrey DJ, Henshall DC, Gafken PR, Saugstad JA, Xiong ZG, Simon RP (2008) Ubiquitin proteasome-mediated synaptic reorganization: a novel mechanism underlying rapid ischemic tolerance. J Neurosci Off J Soc Neurosci 28:50–59

    Article  CAS  Google Scholar 

  30. Zhuang ZY, Wen YR, Zhang DR, Borsello T, Bonny C, Strichartz GR, Decosterd I, Ji RR (2006) A peptide c-Jun N-terminal kinase (JNK) inhibitor blocks mechanical allodynia after spinal nerve ligation: respective roles of JNK activation in primary sensory neurons and spinal astrocytes for neuropathic pain development and maintenance. J Neurosci Off J Soc Neurosci 26:3551–3560

    Article  CAS  Google Scholar 

  31. Komori N, Takemori N, Kim HK, Singh A, Hwang SH, Foreman RD, Chung K, Chung JM, Matsumoto H (2007) Proteomics study of neuropathic and nonneuropathic dorsal root ganglia: altered protein regulation following segmental spinal nerve ligation injury. Physiol Genom 29:215–230

    Article  CAS  Google Scholar 

  32. Yadav R, Weng HR (2017) EZH2 regulates spinal neuroinflammation in rats with neuropathic pain. Neuroscience 349:106–117

    Article  CAS  PubMed  Google Scholar 

  33. Balkowiec-Iskra E, Vermehren-Schmaedick A, Balkowiec A (2011) Tumor necrosis factor-alpha increases brain-derived neurotrophic factor expression in trigeminal ganglion neurons in an activity-dependent manner. Neuroscience 180:322–333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Bone I (2007) The increasing importance of inflammation in neurological disease. Curr Opin Neurol 20:331–333

    Article  PubMed  Google Scholar 

  35. McMahon SB, Malcangio M (2009) Current challenges in glia-pain biology. Neuron 64:46–54

    Article  CAS  PubMed  Google Scholar 

  36. Wodarski R, Clark AK, Grist J, Marchand F, Malcangio M (2009) Gabapentin reverses microglial activation in the spinal cord of streptozotocin-induced diabetic rats. Eur J Pain 13:807–811

    Article  CAS  PubMed  Google Scholar 

  37. Sun S, Chen D, Lin F, Chen M, Yu H, Hou L, Li C (2016) Role of interleukin-4, the chemokine CCL3 and its receptor CCR5 in neuropathic pain. Mol Immunol 77:184–192

    Article  CAS  PubMed  Google Scholar 

  38. Tiwari V, Guan Y, Raja SN (2014) Modulating the delicate glial-neuronal interactions in neuropathic pain: promises and potential caveats. Neurosci Biobehav Rev 45:19–27

    Article  PubMed  Google Scholar 

  39. Hu XM, Liu YN, Zhang HL, Cao SB, Zhang T, Chen LP, Shen W (2015) CXCL12/CXCR4 chemokine signaling in spinal glia induces pain hypersensitivity through MAPKs-mediated neuroinflammation in bone cancer rats. J Neurochem 132:452–463

    Article  CAS  PubMed  Google Scholar 

  40. Zhang X, Zeng L, Yu T, Xu Y, Pu S, Du D, Jiang W (2014) Positive feedback loop of autocrine BDNF from microglia causes prolonged microglia activation. Cell Physiol Biochem 34:715–723

    Article  PubMed  Google Scholar 

  41. Murphy PG, Ramer MS, Borthwick L, Gauldie J, Richardson PM, Bisby MA (1999) Endogenous interleukin-6 contributes to hypersensitivity to cutaneous stimuli and changes in neuropeptides associated with chronic nerve constriction in mice. Eur J Neurosci 11:2243–2253

    Article  CAS  PubMed  Google Scholar 

  42. Mondal S, Dirks P, Rutka JT (2010) Immunolocalization of fascin, an actin-bundling protein and glial fibrillary acidic protein in human astrocytoma cells. Brain Pathol 20:190–199

    Article  CAS  PubMed  Google Scholar 

  43. Ma Y, Li A, Faller WJ, Libertini S, Fiorito F, Gillespie DA, Sansom OJ, Yamashiro S, Machesky LM (2013) Fascin 1 is transiently expressed in mouse melanoblasts during development and promotes migration and proliferation. Development 140:2203–2211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China (Nos. 81401365); a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD); Nantong science and technology project (MS12015056).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhongling Xu or Xiaojuan Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics Approval

All procedures performed in studies involving animals were in accordance with the National Institutes of Health Guide for the Care and Use of Laboratory Animals and were approved by the Animal Care and Use Committee of Nantong University.

Additional information

Binbin Wang, Bingbing Fan, Zhongling Xu and Xiaojuan Liu have contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 191 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, B., Fan, B., Dai, Q. et al. Fascin-1 Contributes to Neuropathic Pain by Promoting Inflammation in Rat Spinal Cord. Neurochem Res 43, 287–296 (2018). https://doi.org/10.1007/s11064-017-2420-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-017-2420-8

Keywords

Navigation