Skip to main content

Advertisement

Log in

Cytochrome P450 2D6 and Parkinson’s Disease: Polymorphism, Metabolic Role, Risk and Protection

  • Review Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Cytochrome P450 (CYP) 2D6 is one of the most highly active, oxidative and polymorphic enzymes known to metabolize Parkinsonian toxins and clinically established anti-Parkinson’s disease (PD) drugs. Albeit CYP2D6 gene is not present in rodents, its orthologs perform almost the similar function with imprecise substrate and inhibitor specificity. CYP2D6 expression and catalytic activity are found to be regulated at every stage of the central dogma except replication as well as at the epigenetic level. CYP2D6 gene codes for a set of alternate splice variants that give rise to a range of enzymes possessing variable catalytic activity. Case-control studies, meta-analysis and systemic reviews covering CYP2D6 polymorphism and PD risk have demonstrated that poor metabolizer phenotype possesses a considerable genetic susceptibility. Besides, ultra-rapid metabolizer offers protection against the risk in some populations while lack of positive or inverse association is also reported in other inhabitants. CYP2D6 polymorphisms resulting into deviant protein products with differing catalytic activity could lead to inter-individual variations, which could be explained to certain extent on the basis of sample size, life style factors, food habits, ethnicity and tools used for statistical analysis across various studies. Current article describes the role played by polymorphic CYP2D6 in the metabolism of anti-PD drugs/Parkinsonian toxins and how polymorphisms determine PD risk or protection. Moreover, CYP2D6 orthologs and their roles in rodent models of Parkinsonism have also been mentioned. Finally, a perspective on inconsistency in the findings and futuristic relevance of CYP2D6 polymorphisms in disease diagnosis and treatment has also been highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Gupta SP, Kamal R, Mishra SK, Singh MK, Shukla R, Singh MP (2016) Association of polymorphism of neuronal nitric oxide synthase gene with risk to Parkinson’s disease. Mol Neurobiol 53(5):3309–3314

    Article  CAS  PubMed  Google Scholar 

  2. Kwakye GF, McMinimy RA, Aschner M (2017) Disease-toxicant interactions in Parkinson’s disease neuropathology. Neurochem Res 42(6):1772–1786

    Article  CAS  PubMed  Google Scholar 

  3. ur Rasheed MS, Tripathi MK, Mishra AK, Shukla S, Singh MP (2016) Resveratrol protects from toxin-induced Parkinsonism: plethora of proofs hitherto petty translational value. Mol Neurobiol 53(5):2751–2760

    Article  CAS  PubMed  Google Scholar 

  4. Singhal NK, Srivastava G, Agrawal S, Jain SK, Singh MP (2012) Melatonin as a neuroprotective agent in the rodent models of Parkinson’s disease: is it all set to irrefutable clinical translation? Mol Neurobiol 45(1):186–199

    Article  CAS  PubMed  Google Scholar 

  5. Franceschi M, Camerlingo M, Perego L, Bottacchi E, Truci G, Mamoli A (1988) Tuberoinfundibular dopaminergic function in Parkinson’s disease. Eur Neurol 28(3):117–119

    Article  CAS  PubMed  Google Scholar 

  6. Schober A (2004) Classic toxin-induced animal models of Parkinson’s disease: 6-OHDA and MPTP. Cell Tissue Res 318(1):215–224

    Article  PubMed  Google Scholar 

  7. Yadav S, Dixit A, Agrawal S, Singh A, Srivastava G, Singh AK, Srivastava PK, Prakash O, Singh MP (2012) Rodent models and contemporary molecular techniques: notable feats yet incomplete explanations of Parkinson’s disease pathogenesis. Mol Neurobiol 46(2):495–512

    Article  CAS  PubMed  Google Scholar 

  8. Mishra AK, ur Rasheed MS, Shukla S, Tripathi MK, Dixit A, Singh MP (2015) Aberrant autophagy and parkinsonism: does correction rescue from disease progression? Mol Neurobiol 51(3):893–908

    Article  CAS  PubMed  Google Scholar 

  9. Eichelbaum M, Baur MP, Dengler HJ, Osikowska-Evers BO, Tieves G, Zekorn C, Rittner C (1987) Chromosomal assignment of human cytochrome P-450 (debrisoquine/sparteine type) to chromosome 22. Br J Clin Pharmacol 23(4):455–458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Gough AC, Smith CA, Howell SM, Wolf CR, Bryant SP, Spurr NK (1993) Localization of the CYP2D gene locus to human chromosome 22q13.1 by polymerase chain reaction, in situ hybridization, and linkage analysis. Genomics 15(2):430–432

    Article  CAS  PubMed  Google Scholar 

  11. Miksys S, Rao Y, Hoffmann E, Mash DC, Tyndale RF (2002) Regional and cellular expression of CYP2D6 in human brain: higher levels in alcoholics. J Neurochem 82(6):1376–1387

    Article  CAS  PubMed  Google Scholar 

  12. Mann A, Tyndale RF (2010) Cytochrome P450 2D6 enzyme neuroprotects against 1-methyl-4-phenylpyridinium toxicity in SH-SY5Y neuronal cells. Eur J Neurosci 31(7):1185–1193

    Article  PubMed  PubMed Central  Google Scholar 

  13. Wang X, Li J, Dong G, Yue J (2014) The endogenous substrates of brain CYP2D. Eur J Pharmacol 724:211–218

    Article  CAS  PubMed  Google Scholar 

  14. Wang B, Yang LP, Zhang XZ, Huang SQ, Bartlam M, Zhou SF (2009) New insights into the structural characteristics and functional relevance of the human cytochrome P450 2D6 enzyme. Drug Metab Rev 41(4):573–643

    Article  CAS  PubMed  Google Scholar 

  15. Bertilsson L, Dahl ML, Dalén P, Al-Shurbaji A (2002) Molecular genetics of CYP2D6: clinical relevance with focus on psychotropic drugs. Br J Clin Pharmacol 53(2):111–122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Mann A, Miksys SL, Gaedigk A, Kish SJ, Mash DC, Tyndale RF (2012) The neuroprotective enzyme CYP2D6 increases in the brain with age and is lower in Parkinson’s disease patients. Neurobiol Aging 33(9):2160–2171

    Article  CAS  PubMed  Google Scholar 

  17. Singh S, Singh K, Patel DK, Singh C, Nath C, Singh VK, Singh RK, Singh MP (2009) The expression of CYP2D22, an ortholog of human CYP2D6, in mouse striatum and its modulation in 1-methyl 4-phenyl-1,2,3,6-tetrahydropyridine-induced Parkinson’s disease phenotype and nicotine-mediated neuroprotection. Rejuvenat Res 12(3):185–197

    Article  CAS  Google Scholar 

  18. Srivastava G, Dixit A, Yadav S, Patel DK, Prakash O, Singh MP (2012) Resveratrol potentiates cytochrome P450 2 d22-mediated neuroprotection in maneb- and paraquat-induced parkinsonism in the mouse. Free Radic Biol Med 52(8):1294–1306

    Article  CAS  PubMed  Google Scholar 

  19. Yue J, Miksys S, Hoffmann E, Tyndale RF (2008) Chronic nicotine treatment induces rat CYP2D in the brain but not in the liver: an investigation of induction and time course. J Psychiatry Neurosci 33(1):54–63

    PubMed  PubMed Central  Google Scholar 

  20. He ZX, Chen XW, Zhou ZW, Zhou SF (2015) Impact of physiological, pathological and environmental factors on the expression and activity of human cytochrome P450 2D6 and implications in precision medicine. Drug Metab Rev 47(4):470–519

    Article  CAS  PubMed  Google Scholar 

  21. Gaedigk A, Bradford LD, Marcucci KA, Leeder JS (2002) Unique CYP2D6 activity distribution and genotype-phenotype discordance in black Americans. Clin Pharmacol Ther 72(1):76–89

    Article  CAS  PubMed  Google Scholar 

  22. McLellan RA, Oscarson M, Seidegård J, Evans DA, Ingelman-Sundberg M (1997) Frequent occurrence of CYP2D6 gene duplication in Saudi Arabians. Pharmacogenetics 7(3):187–191

    Article  CAS  PubMed  Google Scholar 

  23. Bradford LD (2002) CYP2D6 allele frequency in European Caucasians, Asians, Africans and their descendants. Pharmacogenomics 3(2):229–243

    Article  CAS  PubMed  Google Scholar 

  24. Uehara S, Uno Y, Inoue T, Murayama N, Shimizu M, Sasaki E, Yamazaki H (2015) Activation and deactivation of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine by cytochrome P450 enzymes and flavin-containing monooxygenases in common marmosets (Callithrix jacchus). Drug Metab Dispos 43(5):735–742

    Article  CAS  PubMed  Google Scholar 

  25. Bajpai P, Sangar MC, Singh S, Tang W, Bansal S, Chowdhury G, Cheng Q, Fang JK, Martin MV, Guengerich FP, Avadhani NG (2013) Metabolism of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine by mitochondrion-targeted cytochrome P450 2D6: implications in Parkinson disease. J Biol Chem 288(6):4436–4451

    Article  CAS  PubMed  Google Scholar 

  26. Kimura S, Umeno M, Skoda RC, Meyer UA, Gonzalez FJ (1989) The human debrisoquine 4-hydroxylase (CYP2D) locus: sequence and identification of the polymorphic CYP2D6 gene, a related gene, and a pseudogene. Am J Hum Genet 45(6):889–904

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Ingelman-Sundberg M (2005) Genetic polymorphisms of cytochrome P450 2D6 (CYP2D6): clinical consequences, evolutionary aspects and functional diversity. Pharmacogenom J 5(1):6–13

    Article  CAS  Google Scholar 

  28. Rowland P, Blaney FE, Smyth MG, Jones JJ, Leydon VR, Oxbrow AK, Lewis CJ, Tennant MG, Modi S, Eggleston DS, Chenery RJ, Bridges AM (2006) Crystal structure of human cytochrome P450 2D6. J Biol Chem 281:7614–7622

    Article  CAS  PubMed  Google Scholar 

  29. Wang A, Stout CD, Zhang Q, Johnson EF (2015) Contributions of ionic interactions and protein dynamics to cytochrome P450 2D6 (CYP2D6) substrate and inhibitor binding.. J Biol Chem 290(8):5092–5104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kagimoto M, Heim M, Kagimoto K, Zeugin T, Meyer UA (1990) Multiple mutations of the human cytochrome P450IID6 gene (CYP2D6) in poor metabolizers of debrisoquine. Study of the functional significance of individual mutations by expression of chimeric genes. J Biol Chem 265(28):17209–17214

    CAS  PubMed  Google Scholar 

  31. Lucotte G, Turpin JC, Gérard N, Panserat S, Krishnamoorthy R (1996) Mutation frequencies of the cytochrome CYP2D6 gene in Parkinson disease patients and in families. Am J Med Genet 67(4):361–365

    Article  CAS  PubMed  Google Scholar 

  32. Lu Y, Mo C, Zeng Z, Chen S, Xie Y, Peng Q, He Y, Deng Y, Wang J, Xie L, Zeng J, Li S, Qin X (2013) CYP2D6*4 allele polymorphism increases the risk of Parkinson’s disease: evidence from meta-analysis. PLoS ONE 8(12):e84413

    Article  PubMed  PubMed Central  Google Scholar 

  33. Pang CP, Zhang J, Woo J, Chan D, Law LK, Tong SF, Kwok T, Kay R (1998) Rarity of debrisoquine hydroxylase gene polymorphism in Chinese patients with Parkinson’s disease. Mov Disord 13(3):529–532

    Article  CAS  PubMed  Google Scholar 

  34. Tyndale R, Aoyama T, Broly F, Matsunaga T, Inaba T, Kalow W, Gelboin HV, Meyer UA, Gonzalez FJ (1991) Identification of a new variant CYP2D6 allele lacking the codon encoding Lys-281: possible association with the poor metabolizer phenotype. Pharmacogenetics 1(1):26–32

    Article  CAS  PubMed  Google Scholar 

  35. Gaedigk A, Blum M, Gaedigk R, Eichelbaum M, Meyer UA (1991) Deletion of the entire cytochrome P450 CYP2D6 gene as a cause of impaired drug metabolism in poor metabolizers of the debrisoquine/sparteine polymorphism. Am J Hum Genet 48(5):943–950

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Armstrong M, Daly AK, Cholerton S, Bateman DN, Idle JR (1992) Mutant debrisoquine hydroxylation genes in Parkinson’s disease. Lancet 339(8800):1017–1018

    Article  CAS  PubMed  Google Scholar 

  37. Saxena R, Shaw GL, Relling MV, Frame JN, Moir DT, Evans WE, Caporaso N, Weiffenbach B (1994) Identification of a new variant CYP2D6 allele with a single base deletion in exon 3 and its association with the poor metabolizer phenotype. Hum Mol Genet 3(6):923–926

    Article  CAS  PubMed  Google Scholar 

  38. Sachse C, Brockmöller J, Bauer S, Roots I (1997) Cytochrome P450 2D6 variants in a Caucasian population: allele frequencies and phenotypic consequences. Am J Hum Genet 60(2):284–295

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Singh M, Khanna VK, Shukla R, Parmar D (2010) Association of polymorphism in cytochrome P450 2D6 and N-acetyltransferase-2 with Parkinson’s disease. Dis Markers 28(2):87–93

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Johansson I, Lundqvist E, Bertilsson L, Dahl ML, Sjöqvist F, Ingelman-Sundberg M (1993) Inherited amplification of an active gene in the cytochrome P450 CYP2D locus as a cause of ultrarapid metabolism of debrisoquine. Proc Natl Acad Sci USA 90(24):11825–11829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Tsuneoka Y, Matsuo Y, Iwahashi K, Takeuchi H, Ichikawa Y (1993) A novel cytochrome P-450IID6 mutant gene associated with Parkinson’s disease. J Biochem 114(2):263–266

    Article  CAS  PubMed  Google Scholar 

  42. Riedl AG, Watts PM, Jenner P, Marsden CD (1998) P450 enzymes and Parkinson’s disease: the story so far. Mov Disord 13(2):212–220

    Article  CAS  PubMed  Google Scholar 

  43. Panserat S, Sica L, Gérard N, Mathieu H, Jacqz-Aigrain E, Krishnamoorthy R (1999) CYP2D6 polymorphism in a Gabonese population: contribution of the CYP2D6*2 and CYP2D6*17 alleles to the high prevalence of the intermediate metabolic phenotype. Br J Clin Pharmacol 47(1):121–124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ho SL, Kung MH, Li LS, Lauder IJ, Ramsden DB (1999) Cytochrome P4502D6 (debrisoquine 4-hydroxylase) and Parkinson’s disease in Chinese and Caucasians. Eur J Neurol 6(3):323–329

    Article  CAS  PubMed  Google Scholar 

  45. Lu Y, Peng Q, Zeng Z, Wang J, Deng Y, Xie L, Mo C, Zeng J, Qin X, Li S (2014) CYP2D6 phenotypes and Parkinson’s disease risk: a meta-analysis. J Neurol Sci 336(1–2):161–168

    Article  CAS  PubMed  Google Scholar 

  46. Payami H, Lee N, Zareparsi S, McNeal MG, Camicioli R, Bird TD, Sexton G, Gancher S, Kaye J, Calhoun D, Swanson PD, Nutt J (2001) Parkinson’s disease, CYP2D6 polymorphism, and age. Neurology 56:1363–1370

    Article  CAS  PubMed  Google Scholar 

  47. Elbaz A, Levecque C, Clavel J, Vidal JS, Richard F, Amouyel P, Alperovitch A, Chartier-Harlin MC, Tzourio C (2004) CYP2D6 polymorphism, pesticide exposure, and Parkinson’s disease. Ann Neurol 55:430–434

    Article  CAS  PubMed  Google Scholar 

  48. Durić G, Svetel M, Nikolaevic SI, Dragadević N, Gavrilović J, Kostić VS (2007) Polymorphisms in the genes of cytochrome oxidase P450 2D6 (CYP2D6), paraoxonase 1 (PON1) and apolipoprotein E (APOE) as risk factors for Parkinson’s disease. Vojnosanit Pregl 64(1):25–30

    Article  PubMed  Google Scholar 

  49. Deng Y, Newman B, Dunne MP, Silburn PA, Mellick GD (2004) Further evidence that interactions between CYP2D6 and pesticide exposure increase risk for Parkinson’s disease. Ann Neurol 55(6):897

    Article  PubMed  Google Scholar 

  50. Vilar R, Coelho H, Rodrigues E, Gama MJ, Rivera I, Taioli E, Lechner MC (2007) Association of A313 G polymorphism (GSTP1*B) in the glutathione-S-transferase P1 gene with sporadic Parkinson’s disease. Eur J Neurol 14(2):156–161

    Article  CAS  PubMed  Google Scholar 

  51. Caporaso NE, Lerman C, Audrain J, Boyd NR, Main D, Issaq HJ, Utermahlan B, Falk RT, Shields P (2001) Nicotine metabolism and CYP2D6 phenotype in smokers. Cancer Epidemiol Biomarkers Prev 10(3):261–263

    CAS  PubMed  Google Scholar 

  52. De Palma G, Dick FD, Calzetti S, Scott NW, Prescott GJ, Osborne A, Haites N, Mozzoni P, Negrotti A, Scaglioni A, Mutti A, Geoparkinson Study Group (2010) A case-control study of Parkinson’s disease and tobacco use: gene-tobacco interactions. Mov Disord 25(7):912–919

    Article  PubMed  Google Scholar 

  53. Hiroi T, Imaoka S, Funae Y (1998) Dopamine formation from tyramine by CYP2D6. Biochem Biophys Res Commun 249(3):838–843

    Article  CAS  PubMed  Google Scholar 

  54. Mann A, Miksys S, Lee A, Mash DC, Tyndale RF (2008) Induction of the drug metabolizing enzyme CYP2D in monkey brain by chronic nicotine treatment. Neuropharmacology 55(7):1147–1155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Halling J, Petersen MS, Grandjean P, Weihe P, Brosen K (2008) Genetic predisposition to Parkinson’s disease CYP2D6 and HFE in the Faroe Islands. Pharmacogenet Genom 18(3):209–212

    Article  CAS  Google Scholar 

  56. Gołab-Janowska M, Honczarenko K, Gawrońska-Szklarz B, Potemkowski A (2007) CYP2D6 gene polymorphism as a probable risk factor for Alzheimer’s disease and Parkinson’s disease with dementia. Neurol Neurochir Pol 41(2):113–121

    PubMed  Google Scholar 

  57. Anwarullah, Aslam M, Badshah M, Abbasi R, Sultan A, Khan K, Ahmad N, von Engelhardt J (2017) Further evidence for the association of CYP2D6*4 gene polymorphism with Parkinson’s disease: a case control study. Genes Environ 39:18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Corrigan FM, Murray L, Wyatt CL, Shore RF (1998) Diorthosubstituted polychlorinated biphenyls in caudate nucleus in Parkinson’s disease. Exp Neurol 150:339–342

    Article  CAS  PubMed  Google Scholar 

  59. Corrigan FM, Wienburg CL, Shore RF, Daniel SE, Mann D (2000) Organochlorine insecticides in substantia nigra in Parkinson’s disease. J Toxicol Environ Health A 59:229–234

    Article  CAS  PubMed  Google Scholar 

  60. Wang A, Cockburn M, Ly TT, Bronstein JM, Ritz B (2014) The association between ambient exposure to organophosphates and Parkinson’s disease risk. Occup Environ Med 71(4):275–281

    Article  PubMed  PubMed Central  Google Scholar 

  61. Nandipati S, Litvan I (2016) Environmental exposures and Parkinson’s disease. Int J Environ Res Public Health 13:881

    Article  PubMed Central  Google Scholar 

  62. Singh AK, Tiwari MN, Upadhyay G, Patel DK, Singh D, Prakash O, Singh MP (2012) Long term exposure to cypermethrin induces nigrostriatal dopaminergic neurodegeneration in adult rats: postnatal exposure enhances the susceptibility during adulthood. Neurobiol Aging 33(2):404–415

    Article  CAS  PubMed  Google Scholar 

  63. Sams C, Mason HJ, Rawbone R (2000) Evidence for the activation of organophosphate pesticides by cytochromes P450 3A4 and 2D6 in human liver microsomes. Toxicol Lett 116(3):217–221

    Article  CAS  PubMed  Google Scholar 

  64. Costa C, Catania S, Silvari V (2003) Genotoxicity and activation of organophosphate and carbamate pesticides by cytochrome P450 2D6. G Ital Med Lav Ergon 25S(3):81–82

    Google Scholar 

  65. Hiroi T, Chow T, Imaoka S, Funae Y (2002) Catalytic specificity of CYP2D isoforms in rat and human. Drug Metabol Despos 30(9):970–976

    Article  CAS  Google Scholar 

  66. Ravindranath V, Kommaddi RP, Pai HV (2006) Unique cytochromes P450 in human brain: implication in disease pathogenesis. J Neural Transm Suppl 70:167–171

    Article  CAS  Google Scholar 

  67. Miksys SL, Cheung C, Gonzalez FJ, Tyndale RF (2005) Human CYP2D6 and mouse CYP2Ds: organ distribution in a humanized mouse model. Drug Metab Dispos 33(10):1495–1502

    Article  CAS  PubMed  Google Scholar 

  68. Abraham BK, Adithan C (2001) Genetic polymorphism of CYP2D6. Indian J Pharmacol 33:147–169

    CAS  Google Scholar 

Download references

Acknowledgements

Authors earnestly acknowledge the Department of Science and Technology, India and Council of Scientific and Industrial Research, India, respectively, for providing research fellowship to Mohd Sami ur Rasheed and Abhishek Kumar Mishra. The CSIR-IITR communication number of this article is 3454.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahendra Pratap Singh.

Ethics declarations

Conflict of interest

Authors state that they do not have any conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

ur Rasheed, M.S., Mishra, A.K. & Singh, M.P. Cytochrome P450 2D6 and Parkinson’s Disease: Polymorphism, Metabolic Role, Risk and Protection. Neurochem Res 42, 3353–3361 (2017). https://doi.org/10.1007/s11064-017-2384-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-017-2384-8

Keywords

Navigation