Skip to main content
Log in

The Future Vocation of Neural Stem Cells: Lineage Commitment in Brain Development and Evolution

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Understanding the fate commitment of neural stem cells is critical to identify the regulatory mechanisms in developing brains. Genetic lineage-tracing has provided a powerful strategy to unveil the heterogeneous nature of stem cells and their descendants. However, recent studies have reported controversial data regarding the heterogeneity of neural stem cells in the developing mouse neocortex, which prevents a decisive conclusion on this issue. Here, we review the progress that has been made using lineage-tracing analyses of the developing neocortex and discuss stem cell heterogeneity from the viewpoint of comparative and evolutionary biology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Kretzschmar K, Watt FM (2012) Lineage tracing. Cell 148:33–45

    Article  CAS  Google Scholar 

  2. McConnell SK, Kaznowski CE (1991) Cell cycle dependence of laminar determination in developing neocortex. Science 254:282–285

    Article  CAS  Google Scholar 

  3. Desai AR, McConnell SK (2000) Progressive restriction in fate potential by neural progenitors during cerebral cortical development. Development 127:2863–2872

    CAS  PubMed  Google Scholar 

  4. Shen Q, Wang Y, Dimos JT, Fasano CA, Phoenix TN, Lemischka IR, Ivanova NB, Stifani S, Morrisey EE, Temple S (2006) The timing of cortical neurogenesis is encoded within lineages of individual progenitor cells. Nat Neurosci 9:743–751

    Article  CAS  Google Scholar 

  5. Reid CB, Liang I, Walsh C (1995) Systematic widespread clonal organization in cerebral cortex. Neuron 15:299–310

    Article  CAS  Google Scholar 

  6. Walsh C, Cepko CL (1988) Clonally related cortical cells show several migration patterns. Science 241:1342–1345

    Article  CAS  Google Scholar 

  7. Kornack DR, Rakic P (1995) Radial and horizontal deployment of clonally related cells in the primate neocortex: relationship to distinct mitotic lineages. Neuron 15:311–321

    Article  CAS  Google Scholar 

  8. Walsh C, Cepko CL (1992) Widespread dispersion of neuronal clones across functional regions of the cerebral cortex. Science 255:434–440

    Article  CAS  Google Scholar 

  9. Franco SJ, Gil-Sanz C, Martinez-Garay I, Espinosa A, Harkins-Perry SR, Ramos C, Muller U (2012) Fate-restricted neural progenitors in the mammalian cerebral cortex. Science 337:746–749

    Article  CAS  Google Scholar 

  10. Garcia-Moreno F, Molnar Z (2015) Subset of early radial glial progenitors that contribute to the development of callosal neurons is absent from avian brain. Proc Natl Acad Sci USA 112:E5058–5067

    Article  CAS  Google Scholar 

  11. Gil-Sanz C, Espinosa A, Fregoso SP, Bluske KK, Cunningham CL, Martinez-Garay I, Zeng H, Franco SJ, Muller U (2015) Lineage tracing using Cux2-Cre and Cux2-CreERT2 mice. Neuron 86:1091–1099

    Article  CAS  Google Scholar 

  12. Guo C, Eckler MJ, McKenna WL, McKinsey GL, Rubenstein JL, Chen B (2013) Fezf2 expression identifies a multipotent progenitor for neocortical projection neurons, astrocytes, and oligodendrocytes. Neuron 80:1167–1174

    Article  CAS  Google Scholar 

  13. Eckler MJ, Nguyen TD, McKenna WL, Fastow BL, Guo C, Rubenstein JL, Chen B (2015) Cux2-positive radial glial cells generate diverse subtypes of neocortical projection neurons and macroglia. Neuron 86:1100–1108

    Article  CAS  Google Scholar 

  14. Gao P, Postiglione MP, Krieger TG, Hernandez L, Wang C, Han Z, Streicher C, Papusheva E, Insolera R, Chugh K, Kodish O, Huang K, Simons BD, Luo L, Hippenmeyer S, Shi SH (2014) Deterministic progenitor behavior and unitary production of neurons in the neocortex. Cell 159:775–788

    Article  CAS  Google Scholar 

  15. Nomura T, Takahashi M, Hara Y, Osumi N (2008) Patterns of neurogenesis and amplitude of Reelin expression are essential for making a mammalian-type cortex. PloS ONE 3:e1454

    Article  Google Scholar 

  16. Nomura T, Gotoh H, Ono K (2013) Changes in the regulation of cortical neurogenesis contribute to encephalization during amniote brain evolution. Nat Commun 4:2206

    Article  Google Scholar 

  17. Suzuki IK, Kawasaki T, Gojobori T, Hirata T (2012) The temporal sequence of the mammalian neocortical neurogenetic program drives mediolateral pattern in the chick pallium. Dev Cell 22:863–870

    Article  CAS  Google Scholar 

  18. Dugas-Ford J, Rowell JJ, Ragsdale CW (2012) Cell-type homologies and the origins of the neocortex. Proc Natl Acad Sci USA 109:16974–16979

    Article  CAS  Google Scholar 

  19. Nomura T, Izawa E-I (2017) Avian brains: insights from development, behaviors and evolution. Dev Growth Differ 59:244–257

    Article  Google Scholar 

  20. Nomura T, Ohtaka-Maruyama C, Yamashita W, Wakamatsu Y, Murakami Y, Calegari F, Suzuki K, Gotoh H, Ono K (2016) The evolution of basal progenitors in the developing non-mammalian brain. Development 143:66–74

    Article  CAS  Google Scholar 

  21. Martinez-Cerdeno V, Cunningham CL, Camacho J, Keiter JA, Ariza J, Lovern M, Noctor SC (2016) Evolutionary origin of Tbr2-expressing precursor cells and the subventricular zone in the developing cortex. J Comp Neurol 524:433–447

    Article  CAS  Google Scholar 

  22. Puzzolo E, Mallamaci A (2010) Cortico-cerebral histogenesis in the opossum Monodelphis domestica: generation of a hexalaminar neocortex in the absence of a basal proliferative compartment. Neural Dev 5:8

    Article  Google Scholar 

  23. Moreno N, Gonzalez A (2017) Pattern of neurogenesis and identification of neuronal progenitor subtypes during pallial development in Xenopus laevis. Front Neuroanat 11:24

    Article  Google Scholar 

  24. Nomura T, Kawaguchi M, Ono K, Murakami Y (2013) Reptiles: a new model for brain evo-devo research. J Exp Zool B Mol Dev Evol 320:57–73

    Article  Google Scholar 

  25. Yamashita T, Ono K, Ohuchi H, Yumoto A, Gotoh H, Tomonari S, Sakai K, Fujita H, Imamoto Y, Noji S, Nakamura K, Shichida Y (2014) Evolution of mammalian Opn5 as a specialized UV-absorbing pigment by a single amino acid mutation. J Biol Chem 289:3991–4000

    Article  CAS  Google Scholar 

  26. Ventura RE, Goldman JE (2007) Dorsal radial glia generate olfactory bulb interneurons in the postnatal murine brain. J Neurosci 27:4297–4302

    Article  CAS  Google Scholar 

  27. Merkle FT, Mirzadeh Z, Alvarez-Buylla A (2007) Mosaic organization of neural stem cells in the adult brain. Science 317:381–384

    Article  CAS  Google Scholar 

  28. Fuentealba LC, Rompani SB, Parraguez JI, Obernier K, Romero R, Cepko CL, Alvarez-Buylla A (2015) Embryonic origin of postnatal neural stem cells. Cell 161:1644–1655

    Article  CAS  Google Scholar 

  29. Furutachi S, Miya H, Watanabe T, Kawai H, Yamasaki N, Harada Y, Imayoshi I, Nelson M, Nakayama KI, Hirabayashi Y, Gotoh Y (2015) Slowly dividing neural progenitors are an embryonic origin of adult neural stem cells. Nat Neurosci 18:657–665

    Article  CAS  Google Scholar 

  30. Loulier K, Barry R, Mahou P, Le Franc Y, Supatto W, Matho KS, Ieng S, Fouquet S, Dupin E, Benosman R, Chédotal A, Beaurepaire E, Morin X, Livet J (2014) Multiplex cell and lineage tracking with combinatorial labels. Neuron 81(3):505–520

    Article  CAS  Google Scholar 

  31. Garcia-Moreno F, Vasistha NA, Begbie J, Molnar Z (2014) CLoNe is a new method to target single progenitors and study their progeny in mouse and chick. Development 141:1589–1598

    Article  CAS  Google Scholar 

  32. McKenna A, Findlay GM, Gagnon JA, Horwitz MS, Schier AF, Shendure J (2016) Whole-organism lineage tracing by combinatorial and cumulative genome editing. Science 353:aaf7907

    Article  Google Scholar 

  33. Lewitus E, Kelava I, Kalinka AT, Tomancak P, Huttner WB (2014) An adaptive threshold in mammalian neocortical evolution. PLoS Biol 12:e1002000

    Article  Google Scholar 

  34. Otani T, Marchetto MC, Gage FH, Simons BD, Livesey FJ (2016) 2D and 3D stem cell models of primate cortical development identify species-specific differences in progenitor behavior contributing to brain size. Cell Stem Cell 18:467–480

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Drs. Ei-ichi Izawa, Hideyo Ohuchi and Yoshinori Shichida for providing brains of jungle crow and common marmoset. This review article is based on several research projects that were supported by the Grant-in-Aids for Scientific Research Innovative Areas No. 26118510 (to T.N.): “The Evolutionary Origin and Neural Basis of Empathetic Systems”, No. 26118510 (to T.N.): “Integrative understanding of biological phenomena with temperature as a key theme” No. 16H01394, and PRESTO, the Japan Science Technology Agency (JST)(to T.N.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tadashi Nomura.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nomura, T., Gotoh, H. & Ono, K. The Future Vocation of Neural Stem Cells: Lineage Commitment in Brain Development and Evolution. Neurochem Res 43, 162–165 (2018). https://doi.org/10.1007/s11064-017-2380-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-017-2380-z

Keywords

Navigation