Skip to main content

Advertisement

Log in

Genomics-Guided Precise Anti-Epileptic Drug Development

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

An Erratum to this article was published on 21 September 2017

This article has been updated

Abstract

Traditional antiepileptic drug development approaches have yielded many important clinically valuable anti-epileptic drugs. However, the screening of promising compounds has been naturally agnostic to epilepsy etiology in individual human patients. Now, genomic medicine is changing the way we view human disease. International collaborations are unraveling the many molecular genetic causes of the epilepsies, including the early onset epileptic encephalopathies, and some of the familial focal epilepsies. Further advances in precision diagnostics will be facilitated by ongoing large collaborations and the wider availability of whole exome and whole genome sequencing in clinical practice. Securing a precise molecular diagnosis in some individual patients will pave the way for the advent of precision therapeutics of new and re-purposed compounds in the treatment of the epilepsies. This new approach is already beginning, e.g., with the use of everolimus in patients with tuberous sclerosis complex (and perhaps other mTORopathies), the use of quinidine in some children with KCNT1 mutations, and the use of the ketogenic diet in individuals with GLUT-1 deficiency. This article explores the promise of genomics guided drug development as an approach to complement the more traditional model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Change history

  • 21 September 2017

    An erratum to this article has been published.

References

  1. Epi4K Consortium (2012) Epi4K: Gene discovery in 4000 genomes. Epilepsia 53:1457–1467

    Article  Google Scholar 

  2. EpiPM Consortium (2015) A road map for precision medicine in the epilepsies. Lancet Neurol 14:1219–1228

    Article  PubMed Central  Google Scholar 

  3. Reif PS, Tsai M-H, Helbig I et al (2016) Precision medicine in genetic epilepsies: break of dawn? Exp Rev. Neurother 17:381–392

    Article  Google Scholar 

  4. Striano P, Vari MS, Mazzocchetti C et al (2016) Management of genetic epilepsies: from empirical treatment to precision medicine. Pharm Res 107:426–429

    Article  CAS  Google Scholar 

  5. International League Against Epilepsy Consortium on Complex Epilepsies (2014) Genetic determinants of common epilepsies: a meta-analysis of genome-wide association studies. Lancet Neurology 13(9):893–903

    Article  Google Scholar 

  6. McCormack M, Alfirevic A, Bourgeois S et al (2011) HLA-A*3101 and carbamazepine-induced hypersensitivity reactions in Europeans. New Engl J Med 364(12):1134–1143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Chen P, Lin J-J, Lu C-S et al (2011) Carbamazepine-induced toxic effects and HLA B*1502 screening in Taiwan. New Engl J Med 364:1126–1133

    Article  CAS  PubMed  Google Scholar 

  8. Epi4k Consortium (2013) Epilepsy Phenome/Genome Project. De novo mutations in epileptic encephalopthies. Nature 501:217–221

    Article  Google Scholar 

  9. EuroEPINOMICS-RES Consortium, Epilepsy Phenome/Genome P, Epi4K Consortium (2014) De novo mutations in synaptic transmission genes including DNM1 cause epileptic encephalopathies. Am J Hum Genet 95:360–370

    Article  Google Scholar 

  10. Epi4k Consortium (2016) De Novo mutations in SLC1A2 and CACNA1A are important causes of epileptic encephalopathies. Am J Hum Genet 99:287–298

    Article  Google Scholar 

  11. Epi4k Consortium (2017) Epilepsy Phenome/Genome Project. Ultra-rare genetic variation in common epilepsies: a case-control sequencing study. Lancet Neurol 16:135–143

    Article  Google Scholar 

  12. Dhindsa R, Goldstein DB (2015) Genetic discoveries drive molecular analyses and targeted therapeutic options in the epilepsies. Curr Neurol Neurosci Rep 15:70

    Article  PubMed  Google Scholar 

  13. Crino PB (2016) The mTOR signaling cascade: paving new roads to cure neurological disease. Nat Rev Neurol 12:379–392

    Article  CAS  PubMed  Google Scholar 

  14. Caban C, Khan N, Hasbani DM, Crino PB (2017) Genetics of tuberous sclerosis complex: implications for clinical practice. Appl Clin Genet 10:1–8

    Article  PubMed  Google Scholar 

  15. Curatolo P, Bombardieri R, Joswiak S (2008) Tuberous sclerosis. Lancet 372:657–668

    Article  CAS  PubMed  Google Scholar 

  16. Han JM, Sahin M (2011) TSC1/TSC2 signalling in the CNS. FEBS Lett 585:973–980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Citraro R et al (2016) mTOR pathway inhibition as a new therapeutic strategy in epilepsy and epileptogenesis. Pharmacol Res 107:333–343

    Article  CAS  PubMed  Google Scholar 

  18. French JA, Lawson JA, Yapici Z et al (2016) Adjunctive everolimus therapy for treatment-resistant focal-onset seizures associated with tuberous sclerosis (EXIST-3): a phase three, randomized, double-blind, placebo controlled study. Lancet 388:2153–2163

    Article  CAS  PubMed  Google Scholar 

  19. Ricos MG, Hodgson BL, Pippucci T et al (2016) Mutations in the mammalian target of rapamycin pathway regulators NPRL2 and NPRL3 cause focal epilepsy. Ann Neurol 79:120–131

    Article  CAS  PubMed  Google Scholar 

  20. Weckhuysen S, Marson E, Lambrecq V et al (2016) Involvement of GATOR complex genes in familial focal epilepsies and focal cortical dysplasia. Epilepsia 57:994–1003

    Article  CAS  PubMed  Google Scholar 

  21. Baldassari S, Licchetta L, Truper P et al (2016) GATOR1 complex: the common genetic actor in focal epilepsies. J Med Genet 53:503–510

    Article  PubMed  Google Scholar 

  22. Milligan CJ, Li M, Gazina Ev et al (2014) KCNT1 gain of function in two epilepsy phenotypes is reversed by quinidine. Ann Neurol 75:581–590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Beardon D, Strong A, Ehnot J et al (2014) Targeted treatment of migrating partial seizures of infancy with quinidine. Ann Neurol 76:457–461

    Article  Google Scholar 

  24. Mikati MA, Jiang Y, Carboni M et al (2015) Quinidine in the treatment of KCNT1-positive epilepsies. Ann Neurol 78:995–999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Chong PF, Nakamura R, Saitsu H et al (2016) Ineffective quinidine therapy in early onset epileptic encephalopathy with KCNT1 mutation. Ann Neurol 79:502–503

    Article  CAS  PubMed  Google Scholar 

  26. Baraban SC, Dinday MT, Hortopan GA (2013) Drug screening in SCN1a zebrafish mutant identifies clemizole as a potential Dravet syndrome treatment. Nat Commun 4:2410

    Article  PubMed  PubMed Central  Google Scholar 

  27. Griffen A, Hamling KR, Knupp K et al (2017) Clemizole and modulators of serotonin signaling suppress seizures in Dravet syndrome. Brain. doi:10.1093/brain/aww342

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Norman Delanty.

Additional information

An erratum to this article is available at https://doi.org/10.1007/s11064-017-2396-4.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Delanty, N., Cavallleri, G. Genomics-Guided Precise Anti-Epileptic Drug Development. Neurochem Res 42, 2084–2088 (2017). https://doi.org/10.1007/s11064-017-2312-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-017-2312-y

Keywords

Navigation