Skip to main content

Advertisement

Log in

Rapamycin Ameliorates Experimental Autoimmune Encephalomyelitis by Suppressing the mTOR-STAT3 Pathway

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Rapamycin is a new immunosuppressant that has a primarily anti-inflammatory effect and selectively inhibits the activation of T helper (Th)-cell subsets. It is widely used to treat autoimmune disease. We studied the mechanism of rapamycin action against experimental autoimmune encephalomyelitis (EAE) in C57BL/6 mice, a classic animal model of multiple sclerosis. Rapamycin significantly inhibited the development of EAE by decreasing both clinical scores and inflammatory cell infiltration into the spinal cord. Furthermore, rapamycin reversed EAE symptoms in mice showing the initial signs of paralysis. Rapamycin, is a mammalian target of rapamycin (mTOR) inhibitor. By measuring the downstream markers phospho-mTOR (p-mTOR)/mTOR and phospho-signal transducer and activator of transcription 3 (p-STAT3)/STAT3, we showed that rapamycin suppressed the mTOR-STAT3 pathway in EAE mice. The mTOR-STAT3 signaling pathway is important for Th1 and Th17 cell responses. We found that rapamycin-treated mice had reduced proportions of Th1 and Th17 cells, as well as lower mRNA expression for the transcription factors T-bet and RoRγt in EAE mouse splenocytes. To evaluate Th1 and Th17 cell function, we examined expression of their specific cytokines in the peripheral immune system and central nervous system. Rapamycin treatment reduced protein and mRNA levels of interferon (IFN)-γand interleukin (IL)-17 in splenocytes, and reduced IFN-γ and IL-17 mRNA levels in the spinal cords of EAE mice. These findings suggest that rapamycin treatment inhibits the mTOR-STAT3 pathway in EAE mice, thereby promoting immunosuppression. This study may provide new insight into the mechanism controlling rapamycin effects in multiple sclerosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Neuhaus O, Kieseier BC, Hartung HP (2007) Immunosuppressive agents in multiple sclerosis. Neurotherapeutics 4(4):654–660

    Article  CAS  PubMed  Google Scholar 

  2. Dello RC, Lisi L, Feinstein DL, Navarra P (2013) mTOR kinase, a key player in the regulation of glial functions: relevance for the therapy of multiple sclerosis. Glia 61(3):301–311

    Article  Google Scholar 

  3. Esposito M, Ruffini F, Bellone M et al (2010) Rapamycin inhibits relapsing experimental autoimmune encephalomyelitis by both effector and regulatory T cells modulation. J Neuroimmunol 220(1–2):52–63

    Article  CAS  PubMed  Google Scholar 

  4. Lisi L, Navarra P, Cirocchi R et al (2012) Rapamycin reduces clinical signs and neuropathic pain in a chronic model of experimental autoimmune encephalomyelitis. J Neuroimmunol 243(1–2):43–51

    Article  CAS  PubMed  Google Scholar 

  5. Donia M, Mangano K, Amoroso A et al (2009) Treatment with rapamycin ameliorates clinical and histological signs of protracted relapsing experimental allergic encephalomyelitis in Dark Agouti rats and induces expansion of peripheral CD4 + CD25 + Foxp3 + regulatory T cells. J Autoimmun 33(2):135–140

    Article  CAS  PubMed  Google Scholar 

  6. Zhao YG, Wang Y, Guo Z et al (2012) Dihydroartemisinin ameliorates inflammatory disease by its reciprocal effects on Th and regulatory T cell function via modulating the mammalian target of rapamycin pathway. J Immunol 189(9):4417–4425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Koga T, Hedrich CM, Mizui M et al (2014) CaMK4-dependent activation of AKT/mTOR and CREM-alpha underlies autoimmunity-associated Th17 imbalance. J Clin Invest 124(5):2234–2245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hou H, Cao R, Miao J et al (2016) Fingolimod ameliorates the development of experimental autoimmune encephalomyelitis by inhibiting Akt-mTOR axis in mice. Int Immunopharmacol 30:171–178

    Article  CAS  PubMed  Google Scholar 

  9. Xu Y, Li Z, Yin Y et al (2015) Ghrelin inhibits the differentiation of T helper 17 cells through mTOR/STAT3 signaling pathway. PLoS One 10(2):e0117081

    Article  PubMed  PubMed Central  Google Scholar 

  10. Wu X, Dou Y, Yang Y et al (2015) Arctigenin exerts anti-colitis efficacy through inhibiting the differentiation of Th1 and Th17 cells via an mTORC1-dependent pathway. Biochem Pharmacol 96(4):323–336

    Article  CAS  PubMed  Google Scholar 

  11. Bielekova B, Goodwin B, Richert N et al (2000) Encephalitogenic potential of the myelin basic protein peptide (amino acids 83–99) in multiple sclerosis: results of a phase II clinical trial with an altered peptide ligand. Nat Med 6(10):1167–1175

    Article  CAS  PubMed  Google Scholar 

  12. Lock C, Hermans G, Pedotti R et al (2002) Gene-microarray analysis of multiple sclerosis lesions yields new targets validated in autoimmune encephalomyelitis. Nat Med 8(5):500–508

    Article  CAS  PubMed  Google Scholar 

  13. Berard JL, Wolak K, Fournier S, David S (2010) Characterization of relapsing-remitting and chronic forms of experimental autoimmune encephalomyelitis in C57BL/6 mice. Glia 58(4):434–445

    PubMed  Google Scholar 

  14. Murphy AC, Lalor SJ, Lynch MA, Mills KH (2010) Infiltration of Th1 and Th17 cells and activation of microglia in the CNS during the course of experimental autoimmune encephalomyelitis. Brain Behav Immun 24(4):641–651

    Article  CAS  PubMed  Google Scholar 

  15. Zhang GX, Gran B, Yu S et al (2003) Induction of experimental autoimmune encephalomyelitis in IL-12 receptor-beta 2-deficient mice: IL-12 responsiveness is not required in the pathogenesis of inflammatory demyelination in the central nervous system. J Immunol 170(4):2153–2160

    Article  CAS  PubMed  Google Scholar 

  16. Zhang F, Yang J, Jiang H, Han S (2014) An alphanubeta3 integrin-binding peptide ameliorates symptoms of chronic progressive experimental autoimmune encephalomyelitis by alleviating neuroinflammatory responses in mice. J Neuroimmune Pharmacol 9(3):399–412

    Article  CAS  PubMed  Google Scholar 

  17. Chen C, Liu Y, Liu Y, Zheng P (2010) Mammalian target of rapamycin activation underlies HSC defects in autoimmune disease and inflammation in mice. J Clin Invest 120(11):4091–4101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Winbanks CE, Grimwood L, Gasser A, Darby IA, Hewitson TD, Becker GJ (2007) Role of the phosphatidylinositol 3-kinase and mTOR pathways in the regulation of renal fibroblast function and differentiation. Int J Biochem Cell Biol 39(1):206–219

    Article  CAS  PubMed  Google Scholar 

  19. Yokogami K, Wakisaka S, Avruch J, Reeves SA (2000) Serine phosphorylation and maximal activation of STAT3 during CNTF signaling is mediated by the rapamycin target mTOR. Curr Biol 10(1):47–50

    Article  CAS  PubMed  Google Scholar 

  20. Zhou J, Wulfkuhle J, Zhang H et al (2007) Activation of the PTEN/mTOR/STAT3 pathway in breast cancer stem-like cells is required for viability and maintenance. Proc Natl Acad Sci USA 104(41):16158–16163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Yokoyama T, Kondo Y, Kondo S (2007) Roles of mTOR and STAT3 in autophagy induced by telomere 3′ overhang-specific DNA oligonucleotides. Autophagy 3(5):496–498

    Article  CAS  PubMed  Google Scholar 

  22. Hong SM, Park CW, Cha HJ et al (2013) Rapamycin inhibits both motility through down-regulation of p-STAT3 (S727) by disrupting the mTORC2 assembly and peritoneal dissemination in sarcomatoid cholangiocarcinoma. Clin Exp Metastasis 30(2):177–187

    Article  CAS  PubMed  Google Scholar 

  23. Liu G, Yang K, Burns S, Shrestha S, Chi H (2010) The S1P(1)-mTOR axis directs the reciprocal differentiation of T(H)1 and T(reg) cells. Nat Immunol 11(11):1047–1056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Delgoffe GM, Kole TP, Zheng Y et al (2009) The mTOR kinase differentially regulates effector and regulatory T cell lineage commitment. Immunity 30(6):832–844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Szabo SJ, Kim ST, Costa GL, Zhang X, Fathman CG, Glimcher LH (2000) A novel transcription factor, T-bet, directs Th1 lineage commitment. Cell 100(6):655–669

    Article  CAS  PubMed  Google Scholar 

  26. Durant L, Watford WT, Ramos HL et al (2010) Diverse targets of the transcription factor STAT3 contribute to T cell pathogenicity and homeostasis. Immunity 32(5):605–615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wing AC, Hygino J, Ferreira TB, et al (2016) Interleukin-17- and interleukin-22-secreting myelin-specific CD4(+) T cells resistant to corticoids are related with active brain lesions in multiple sclerosis patients. Immunology 147(2):212–220

    Article  CAS  PubMed  Google Scholar 

  28. Zhang J, Zeng YQ, Zhang J et al (2015) Tripchlorolide ameliorates experimental autoimmune encephalomyelitis by down-regulating ERK1/2-NF-kappaB and JAK/STAT signaling pathways. J Neurochem 133(1):104–112

    Article  CAS  PubMed  Google Scholar 

  29. Traugott U, Lebon P (1988) Interferon-gamma and Ia antigen are present on astrocytes in active chronic multiple sclerosis lesions. J Neurol Sci 84(2–3):257–264

    Article  CAS  PubMed  Google Scholar 

  30. Pelfrey CM, Rudick RA, Cotleur AC, Lee JC, Tary-Lehmann M, Lehmann PV (2000) Quantification of self-recognition in multiple sclerosis by single-cell analysis of cytokine production. J Immunol 165(3):1641–1651

    Article  CAS  PubMed  Google Scholar 

  31. Lees JR, Golumbek PT, Sim J, Dorsey D, Russell JH (2008) Regional CNS responses to IFN-gamma determine lesion localization patterns during EAE pathogenesis. J Exp Med.. 205(11):2633–2642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Babaloo Z, Aliparasti MR, Babaiea F, Almasi S, Baradaran B, Farhoudi M (2015) The role of Th17 cells in patients with relapsing-remitting multiple sclerosis: interleukin-17 A and interleukin-17F serum levels. Immunol Lett 164(2):76–80

    Article  CAS  PubMed  Google Scholar 

  33. Tang SC, Fan XH, Pan QM, Sun QS, Liu Y (2015) Decreased expression of IL-27 and its correlation with Th1 and Th17 cells in progressive multiple sclerosis. J Neurol Sci 348(1–2):174–180

    Article  CAS  PubMed  Google Scholar 

  34. Sun Y, Tian T, Gao J et al (2016) Metformin ameliorates the development of experimental autoimmune encephalomyelitis by regulating T helper 17 and regulatory T cells in mice. J Neuroimmunol 292:58–67

    Article  CAS  PubMed  Google Scholar 

  35. Li B, Cui W, Liu J et al (2013) Sulforaphane ameliorates the development of experimental autoimmune encephalomyelitis by antagonizing oxidative stress and Th17-related inflammation in mice. Exp Neurol 250:239–249

    Article  CAS  PubMed  Google Scholar 

  36. Zhang J, Cheng Y, Cui W, Li M, Li B, Guo L (2014) MicroRNA-155 modulates Th1 and Th17 cell differentiation and is associated with multiple sclerosis and experimental autoimmune encephalomyelitis. J Neuroimmunol 266(1–2):56–63

    Article  CAS  PubMed  Google Scholar 

  37. Xiao J, Yang R, Yang L, Fan X, Liu W, Deng W (2015) Kirenol attenuates experimental autoimmune encephalomyelitis by inhibiting differentiation of Th1 and th17 cells and inducing apoptosis of effector T cells. Sci Rep 5:9022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Shen R, Deng W, Li C, Zeng G (2015) A natural flavonoid glucoside icariin inhibits Th1 and Th17 cell differentiation and ameliorates experimental autoimmune encephalomyelitis. Int Immunopharmacol 24(2):224–231

    Article  CAS  PubMed  Google Scholar 

  39. Togha M, Jahanshahi M, Alizadeh L et al (2016) Rapamycin augments immunomodulatory properties of bone marrow-derived mesenchymal stem cells in experimental autoimmune encephalomyelitis. Mol Neurobiol. doi:10.1007/s12035-016-9840-3

    PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank Chunyan Li, Jingci Yang, Yansu Guo, Dongxia Wu and Hongran Wu for expert technical assistances. Financial support was obtained from the National Natural Science Foundation of China (No. 81100884) and the key project of Medical Science Research in Hebei Province (No. 20150213).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Guo.

Ethics declarations

Conflict of Interest

There are no conflicts of interest to declare.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hou, H., Miao, J., Cao, R. et al. Rapamycin Ameliorates Experimental Autoimmune Encephalomyelitis by Suppressing the mTOR-STAT3 Pathway. Neurochem Res 42, 2831–2840 (2017). https://doi.org/10.1007/s11064-017-2296-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-017-2296-7

Keywords

Navigation