Skip to main content
Log in

Effect of Paullinia cupana Mart. Commercial Extract During the Aging of Middle Age Wistar Rats: Differential Effects on the Hippocampus and Striatum

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

During aging, there is a marked decline in the antioxidant capacity of brain tissue, leading to a gradual loss of the antioxidant/oxidant balance, which causes oxidative damage. The effects of Paullinia cupana Mart. extract, which is described as being rich in caffeine and many polyphenol compounds, on the central nervous system have not been extensively investigated. The aim of this study was to therefore investigate the effect of a commercial guarana extract (CGE) on cognitive function, oxidative stress, and brain homeostasis proteins related to cognitive injury and senescence in middle age, male Wistar rats. Animals were randomly assigned to a group according to their treatment (saline, CGE, or caffeine). Solutions were administered daily by oral gavage for 6 months. Open field and novel object recognition tasks were performed before and after treatment. Biochemical analyses were carried out on the hippocampus and striatum. Our open field data showed an increase in exploratory activity and a decrease in anxiety-like behavior with caffeine but not with the CGE treatment. In the CGE-treated group, catalase activity decreased in the hippocampus and increased in the striatum. Analyses of the hippocampus and striatum indicate that CGE and/or caffeine altered some of the analyzed parameters in a tissue-specific manner. Our data suggest that CGE intake does not improve cognitive development, but modifies the oxidative stress machinery and neurodegenerative-signaling pathway, inhibiting pro-survival pathway molecules in the hippocampus and striatum. This may contribute to the development of unfavorable microenvironments in the brain and neurodegenerative disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Burlá C et al (2013) A perspective overview of dementia in Brazil: a demographic approach. Cien Saude Colet 18(10):2949–2956

    Article  PubMed  Google Scholar 

  2. Joseph J et al (2009) Nutrition, brain aging, and neurodegeneration. J Neurosci 29(41):12795–12801

    Article  CAS  PubMed  Google Scholar 

  3. Mattson MP, Chan SL, Duan W (2002) Modification of brain aging and neurodegenerative disorders by genes, diet, and behavior. Physiol Rev 82(3):637–672

    Article  CAS  PubMed  Google Scholar 

  4. Bonomini F, Rodella LF, Rezzani R (2015) Metabolic syndrome, aging and involvement of oxidative stress. Aging Dis 6(2):109–120

    Article  PubMed  PubMed Central  Google Scholar 

  5. Queen BL, Tollefsbol TO (2010) Polyphenols and aging. Curr Aging Sci 3(1):34–42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Perry E, Howes MJ (2011) Medicinal plants and dementia therapy: herbal hopes for brain aging? CNS Neurosci Ther 17(6):683–698

    Article  PubMed  Google Scholar 

  7. Youdim KA, Joseph JA (2001) A possible emerging role of phytochemicals in improving age-related neurological dysfunctions: a multiplicity of effects. Free Radic Biol Med 30(6):583–594

    Article  CAS  PubMed  Google Scholar 

  8. de Portella RL, et al (2013) Guaraná (Paullinia cupana Kunth) effects on LDL oxidation in elderly people: an in vitro and in vivo study. Lipids Health Dis 12:12

    Article  CAS  PubMed Central  Google Scholar 

  9. Ali F et al (2015) Energy drinks and their adverse health effects: a systematic review of the current evidence. Postgrad Med 127(3):308–322

    Article  PubMed  Google Scholar 

  10. Angelo PC et al (2008) Guarana (Paullinia cupana var. sorbilis), an anciently consumed stimulant from the Amazon rain forest: the seeded-fruit transcriptome. Plant Cell Rep 27(1):117–124

    Article  CAS  PubMed  Google Scholar 

  11. Fukumasu H et al (2006) Protective effects of guarana (Paullinia cupana Mart. var. Sorbilis) against DEN-induced DNA damage on mouse liver. Food Chem Toxicol 44(6):862–867

    Article  CAS  PubMed  Google Scholar 

  12. Zeidán-Chuliá F et al (2013) Major components of energy drinks (caffeine, taurine, and guarana) exert cytotoxic effects on human neuronal SH-SY5Y cells by decreasing reactive oxygen species production. Oxid Med Cell Longev 2013:791795

    Article  PubMed  PubMed Central  Google Scholar 

  13. Bittencourt, LAS et al (2014) Guarana (Paullinia cupana Mart.) prevents β-amyloid aggregation, generation of advanced glycation-end products (AGEs), and acrolein-induced cytotoxicity on human neuronal-like cells. Phytother Res 28(11):1615–1624

    Article  CAS  Google Scholar 

  14. Harrold JA et al (2013) Acute effects of a herb extract formulation and inulin fibre on appetite, energy intake and food choice. Appetite 62:84–90

    Article  CAS  PubMed  Google Scholar 

  15. Ferrini MG et al. (2015) Treatment with a combination of ginger, L-citrulline, muira puama and Paullinia cupana can reverse the progression of corporal smooth muscle loss, fibrosis and veno-occlusive dysfunction in the aging rat. Andrology (Los Angel). 4(1)

  16. Kennedy DO et al (2004) Improved cognitive performance in human volunteers following administration of guarana (Paullinia cupana) extract: comparison and interaction with Panax ginseng. Pharmacol Biochem Behav 79(3):401–411

    Article  CAS  PubMed  Google Scholar 

  17. Campos AR et al (2005) Acute effects of guarana (Paullinia cupana Mart.) on mouse behaviour in forced swimming and open field tests. Phytother Res 19(5):441–443

    Article  CAS  PubMed  Google Scholar 

  18. Cechella JL et al (2014) Caffeine suppresses exercise-enhanced long-term and location memory in middle-aged rats: Involvement of hippocampal Akt and CREB signaling. Chem Biol Interact 223:95–101

    Article  CAS  PubMed  Google Scholar 

  19. Brothers HM, Marchalant Y, Wenk GL (2010) Caffeine attenuates lipopolysaccharide-induced neuroinflammation. Neurosci Lett 480(2):97–100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Boeck CR et al (2009) Early long-term exposure with caffeine induces cross-sensitization to methylphenidate with involvement of DARPP-32 in adulthood of rats. Neurochem Int 55(5):318–322

    Article  CAS  PubMed  Google Scholar 

  21. Gweshelo D, Muswe R, Mukanganyama S (2016) In vivo and in vitro inhibition of rat liver glutathione transferases activity by extracts from Combretum zeyheri (Combretaceae) and Parinari curatellifolia (Chrysobalanaceae). BMC Complement Altern Med 16:238

    Article  PubMed  PubMed Central  Google Scholar 

  22. Ruchel JB et al. (2016) Guarana (Paullinia cupana) ameliorates memory impairment and modulates acetylcholinesterase activity in poloxamer 407 induced hyperlipidemia in rat brain. Physiol Behav 168:11–19

    Article  PubMed  Google Scholar 

  23. Odorcyk FK et al. (2016) Administration of Huperzia quadrifariata extract, a cholinesterase Inhibitory alkaloid mixture, has neuroprotective effects in a rat model of cerebral hypoxia-ischemia. Neurochem Res 1–11

  24. Rojas P et al (2004) EGb761 pretreatment reduces monoamine oxidase activity in mouse corpus striatum during 1-methyl-4-phenylpyridinium neurotoxicity. Neurochem Res 29(7):1417–1423

    Article  CAS  PubMed  Google Scholar 

  25. da Silveira CC et al (2016) Neurobehavioral and antioxidant effects of ethanolic extract of yellow propolis. Oxid Med Cell Longev 2016:2906953

    Article  PubMed  PubMed Central  Google Scholar 

  26. Sousa, S.A.d. et al (2011) Dissolution test of herbal medicines containing Paullinia cupana: validation of methods for quantification and assessment of dissolution. Brazilian J. Pharm Sci 47:269–277

    Article  Google Scholar 

  27. Ménard C et al (2014) Glutamatergic signaling and low prodynorphin expression are associated with intact memory and reduced anxiety in rat models of healthy aging. Front Aging Neurosci 6:81

    PubMed  PubMed Central  Google Scholar 

  28. Kawai H, Lazar R, Metherate R (2007) Nicotinic control of axon excitability regulates thalamocortical transmission. Nat Neurosci 10(9):1168–1175

    Article  CAS  PubMed  Google Scholar 

  29. Pagnussat N et al (2015) Adenosine A(2A) receptors are necessary and sufficient to trigger memory impairment in adult mice. Br J Pharmacol 172(15):3831–3845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. LOWRY OH et al (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193(1):265–275

    CAS  PubMed  Google Scholar 

  31. Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126

    Article  CAS  PubMed  Google Scholar 

  32. Misra HP, Fridovich I (1972) The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase. J Biol Chem 247(10):3170–3175

    CAS  PubMed  Google Scholar 

  33. Wendel A (1981) Glutathione peroxidase. Methods Enzymol 77:325–333

    Article  CAS  PubMed  Google Scholar 

  34. Habig WH, Pabst MJ, Jakoby WB (1974) Glutathione S-transferases. The first enzymatic step in mercapturic acid formation. J Biol Chem 249(22):7130–7139

    CAS  PubMed  Google Scholar 

  35. Draper HH, Hadley M (1990) Malondialdehyde determination as index of lipid peroxidation. Methods Enzymol 186:421–431

    Article  CAS  PubMed  Google Scholar 

  36. Levine RL et al (1990) Determination of carbonyl content in oxidatively modified proteins. Methods Enzymol 186:464–478

    Article  CAS  PubMed  Google Scholar 

  37. Ellman GL (1959) Tissue sulfhydryl groups. Arch Biochem Biophys 82(1):70–77

    Article  CAS  PubMed  Google Scholar 

  38. Heimfarth L et al (2013) Disrupted cytoskeletal homeostasis, astrogliosis and apoptotic cell death in the cerebellum of preweaning rats injected with diphenyl ditelluride. Neurotoxicology 34:175–188

    Article  CAS  PubMed  Google Scholar 

  39. Chan CH et al (2014) Posttranslational regulation of Akt in human cancer. Cell Biosci 4(1):59

    Article  PubMed  PubMed Central  Google Scholar 

  40. Liao Y, Hung MC (2010) Physiological regulation of Akt activity and stability. Am J Transl Res 2(1):19–42

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Dimpfel W (2013) Pharmacological classification of herbal extracts by means of comparison to spectral EEG signatures induced by synthetic drugs in the freely moving rat. J Ethnopharmacol 149(2):583–589

    Article  CAS  PubMed  Google Scholar 

  42. Antonelli-Ushirobira TM et al (2010) Acute and subchronic toxicological evaluation of the semipurified extract of seeds of guaraná (Paullinia cupana) in rodents. Food Chem Toxicol 48(7):1817–1820

    Article  CAS  PubMed  Google Scholar 

  43. Bérubé-Parent S et al (2005) Effects of encapsulated green tea and Guarana extracts containing a mixture of epigallocatechin-3-gallate and caffeine on 24 h energy expenditure and fat oxidation in men. Br J Nutr 94(3):432–436

    Article  PubMed  Google Scholar 

  44. Kennedy DO et al (2008) Improved cognitive performance and mental fatigue following a multi-vitamin and mineral supplement with added guaraná (Paullinia cupana). Appetite 50(2–3):506–513

    Article  CAS  PubMed  Google Scholar 

  45. Scholey A et al (2013) Acute effects of different multivitamin mineral preparations with and without Guaraná on mood, cognitive performance and functional brain activation. Nutrients 5(9):3589–3604

    Article  PubMed  PubMed Central  Google Scholar 

  46. Prut L, Belzung C (2003) The open field as a paradigm to measure the effects of drugs on anxiety-like behaviors: a review. Eur J Pharmacol 463(1–3):3–33

    Article  CAS  PubMed  Google Scholar 

  47. Caravan I et al (2016) Modulatory effects of caffeine on oxidative stress and anxiety-like behavior in ovariectomized rats. Can J Physiol Pharmacol 94(9):961–972

    Article  PubMed  Google Scholar 

  48. Çakır Ö et al (2016) Protective effect of low dose caffeine on psychological stress and cognitive function. Physiol Behav 168:1–10

    PubMed  Google Scholar 

  49. Otobone FJ et al (2007) Effect of lyophilized extracts from guaraná seeds [Paullinia cupana var. sorbilis (Mart.) Ducke] on behavioral profiles in rats. Phytother Res 21(6):531–535

    Article  CAS  PubMed  Google Scholar 

  50. Levy R, Dubois B (2006) Apathy and the functional anatomy of the prefrontal cortex-basal ganglia circuits. Cereb Cortex 16(7):916–928

    Article  PubMed  Google Scholar 

  51. Vertes RP (2006) Interactions among the medial prefrontal cortex, hippocampus and midline thalamus in emotional and cognitive processing in the rat. Neuroscience 142(1):1–20

    Article  CAS  PubMed  Google Scholar 

  52. Ferretti V et al (2010) Ventral striatal plasticity and spatial memory. Proc Natl Acad Sci USA 107(17):7945–7950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Piyabhan P, Wetchateng T (2014) Neuroprotective effects of Bacopa monnieri (Brahmi) on novel object recognition and NMDAR1 immunodensity in the prefrontal cortex, striatum and hippocampus of sub-chronic phencyclidine rat model of schizophrenia. J Med Assoc Thai 97(8):S50–S55

    PubMed  Google Scholar 

  54. Bittencourt LS, Bortolin RC, Kolling EA, Schnorr CE, Zanotto-Filho A, Gelain DP, Moreira JCF (2016) Antioxidant profile characterization of a commercial. J Nat Prod Res 2(1):47–52

    Google Scholar 

  55. LeBel CP, Bondy SC (1991) Oxygen radicals: common mediators of neurotoxicity. Neurotoxicol Teratol 13(3):341–346

    Article  CAS  PubMed  Google Scholar 

  56. Cardozo-Pelaez F et al (1999) Oxidative DNA damage in the aging mouse brain. Mov Disord 14(6):972–980

    Article  CAS  PubMed  Google Scholar 

  57. Halliwell B (2006) Oxidative stress and neurodegeneration: where are we now? J Neurochem 97(6):1634–1658

    Article  CAS  PubMed  Google Scholar 

  58. Bouayed J, Rammal H, Soulimani R (2009) Oxidative stress and anxiety: relationship and cellular pathways. Oxid Med Cell Longev 2(2):63–67

    Article  PubMed  PubMed Central  Google Scholar 

  59. de Oliveira MR et al (2007) Oxidative stress in the hippocampus, anxiety-like behavior and decreased locomotory and exploratory activity of adult rats: effects of sub acute vitamin A supplementation at therapeutic doses. Neurotoxicology 28(6):1191–1199

    Article  PubMed  Google Scholar 

  60. Ohashi M et al (2016) Hydrogen peroxide modulates neuronal excitability and membrane properties in ventral horn neurons of the rat spinal cord. Neuroscience 331:206–220

    Article  CAS  PubMed  Google Scholar 

  61. Jiang H et al (2007) Parkinson’s disease genetic mutations increase cell susceptibility to stress: mutant alpha-synuclein enhances H2O2- and Sin-1-induced cell death. Neurobiol Aging 28(11):1709–1717

    Article  CAS  PubMed  Google Scholar 

  62. Pasquali MA et al (2008) Retinol and retinoic acid modulate catalase activity in Sertoli cells by distinct and gene expression-independent mechanisms. Toxicol In Vitro 22(5):1177–1183

    Article  CAS  PubMed  Google Scholar 

  63. Poljsak B, Milisav I (2012) The neglected significance of “antioxidative stress”. Oxid Med Cell Longev 2012:480895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. de Oliveira MR et al (2012) The effects of vitamin A supplementation for 3 months on adult rat nigrostriatal axis: increased monoamine oxidase enzyme activity, mitochondrial redox dysfunction, increased β-amyloid(1–40) peptide and TNF-α contents, and susceptibility of mitochondria to an in vitro H2O2 challenge. Brain Res Bull 87(4–5):432–444

    Article  PubMed  Google Scholar 

  65. Lau A et al (2008) Dual roles of Nrf2 in cancer. Pharmacol Res 58(5–6):262–270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. de Bittencourt Pasquali MA et al (2016) Gene expression profile of NF-κB, Nrf2, glycolytic, and p53 pathways during the SH-SY5Y neuronal differentiation mediated by retinoic acid. Mol Neurobiol 53(1):423–435

    Article  PubMed  Google Scholar 

  67. Mittal, SP et al (2016) Andrographolide protects liver cells from H2O2 induced cell death by upregulation of Nrf-2/HO-1 mediated via adenosine A2a receptor signalling. Biochim Biophys Acta 1860(11 Pt A):2377–2290

    Article  CAS  PubMed  Google Scholar 

  68. Dalle-Donne I et al (2003) Protein carbonyl groups as biomarkers of oxidative stress. Clin Chim Acta 329(1–2):23–38

    Article  CAS  PubMed  Google Scholar 

  69. Li H et al (2016) Rice protein suppresses ROS generation and stimulates antioxidant gene expression via Nrf2 activation in adult rats. Gene 585(2):256–264

    Article  CAS  PubMed  Google Scholar 

  70. Rathore P et al (2008) Curcuma oil: reduces early accumulation of oxidative product and is anti-apoptogenic in transient focal ischemia in rat brain. Neurochem Res 33(9):1672–1682

    Article  CAS  PubMed  Google Scholar 

  71. Doti N et al (2014) Inhibition of the AIF/CypA complex protects against intrinsic death pathways induced by oxidative stress. Cell Death Dis 5:e993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Kwon SH et al (2015) 3′,4′,7-Trihydroxyflavone prevents apoptotic cell death in neuronal cells from hydrogen peroxide-induced oxidative stress. Food Chem Toxicol 80:41–51

    Article  CAS  PubMed  Google Scholar 

  73. Cao GS et al (2016) A combination of four effective components derived from Sheng-mai san attenuates hydrogen peroxide-induced injury in PC12 cells through inhibiting Akt and MAPK signaling pathways. Chin. J Nat Med 14(7):508–517

    Google Scholar 

  74. Mattson MP, Duan W, Maswood N (2002) How does the brain control lifespan? Ageing Res Rev 1(2):155–165

    Article  CAS  PubMed  Google Scholar 

  75. Kang CH et al (2012) Caffeine suppresses lipopolysaccharide-stimulated BV2 microglial cells by suppressing Akt-mediated NF-κB activation and ERK phosphorylation. Food Chem Toxicol 50(12):4270–4276

    Article  CAS  PubMed  Google Scholar 

  76. de Bittencourt Pasquali MA et al (2013) Vitamin A (retinol) downregulates the receptor for advanced glycation endproducts (RAGE) by oxidant-dependent activation of p38 MAPK and NF-kB in human lung cancer A549 cells. Cell Signal 25(4):939–954

    Article  PubMed  Google Scholar 

  77. Sharma S et al (2016) Alzheimer’s disease like pathology induced six weeks after aggregated amyloid-beta injection in rats: increased oxidative stress and impaired long-term memory with anxiety-like behavior. Neurol Res 38(9):838–850

    Article  CAS  PubMed  Google Scholar 

  78. Ray R, Juranek JK, Rai V (2016) RAGE axis in neuroinflammation, neurodegeneration and its emerging role in the pathogenesis of amyotrophic lateral sclerosis. Neurosci Biobehav Rev 62:48–55

    Article  CAS  PubMed  Google Scholar 

  79. Vincent AM et al (2007) Receptor for advanced glycation end products activation injures primary sensory neurons via oxidative stress. Endocrinology 148(2):548–558

    Article  CAS  PubMed  Google Scholar 

  80. Origlia N et al (2008) Receptor for advanced glycation end product-dependent activation of p38 mitogen-activated protein kinase contributes to amyloid-beta-mediated cortical synaptic dysfunction. J Neurosci 28(13):3521–3530

    Article  CAS  PubMed  Google Scholar 

  81. Cai Z et al. (2015) Role of RAGE in alzheimer’s disease. Cell Mol Neurobiol 11:1015

    CAS  Google Scholar 

  82. Li S et al (2015) Caffeine, through adenosine A3 receptor-mediated actions, suppresses amyloid-β protein precursor internalization and amyloid-β generation. J Alzheimers Dis 47(1):73–83

    Article  PubMed  PubMed Central  Google Scholar 

  83. Yu W et al (2015) Reactive transformation and increased BDNF signaling by hippocampal astrocytes in response to MK-801. PLoS ONE 10(12):e0145651

    Article  PubMed  PubMed Central  Google Scholar 

  84. von Bohlen und Halbach O (2011) Immunohistological markers for proliferative events, gliogenesis, and neurogenesis within the adult hippocampus. Cell Tissue Res 345(1):1–19

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the funding agencies that supported this research, including grants from the National Coordination for Improvement of Higher Education Personnel (CAPES, Brazil) and from National Counsel of Technological and Scientific Development (CNPq, Brazil process n°. 402471/20113-0).

Author Contributions

All authors listed above participated in the study to a significant extent. Moara Rodrigues Mingori, Fares Zeidán-Chuliá, José Cláudio Fonseca Moreira, and Daniel Pens Gelain conceived and designed the experiments. Moara Rodrigues Mingori, Luana Heimfarth, Karla Suzana Moresco, Henrique Mautone Gomes, Jeferson Delgado, and Sabrina Roncato performed the experiments. Moara Rodrigues Mingori, Luana Heimfarth, Charles Francisco Ferreira, and José Cláudio Fonseca Moreira worked on the analysis and interpretation of the data, writing, and intellectual content of the article. All authors read and approved the submitted manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moara Rodrigues Mingori.

Ethics declarations

Conflict of interest

Luana Heimfarth has received a postdoctoral scholarship from the National Council for Scientific and Technological Development (CAPES/FAPERGS, Brazil). Moara Rodrigues Mingori and Karla Suzana Moresco have received doctoral scholarships from the National Coordination for Improvement of Higher Education Personnel (CAPES, Brazil). Henrique Mautone Gomes has received a PROBIT/FAPERGS graduation scholarship. Jeferson Delgado and Sabrina Roncato have received PROPESQ/UFRGS graduation scholarships. None of the authors declare a conflict of interest related to this study, whether financial or otherwise.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11064_2017_2238_MOESM1_ESM.tif

Supplementary Fig. 1 Novel Object Recognition Task Effect of commercial guarana extract (CGE) and caffeine treatment on recognition memory performance in the novel object recognition task. Fig. 1a Object recognition index (24 h) in the three groups. Fig. 1b Object recognition index (3 h). Values represent the means ± SEM, n = 10 in each group. A one-way ANOVA indicated no statistical differences among groups (p > 0.05). (TIF 2147 KB)

Supplementary Table 1. Total polyphenols content of Guarana powder (Paullinia cupana Mart.) (μg/100 g DW) (DOC 29 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mingori, M.R., Heimfarth, L., Ferreira, C.F. et al. Effect of Paullinia cupana Mart. Commercial Extract During the Aging of Middle Age Wistar Rats: Differential Effects on the Hippocampus and Striatum. Neurochem Res 42, 2257–2273 (2017). https://doi.org/10.1007/s11064-017-2238-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-017-2238-4

Keywords

Navigation