Skip to main content
Log in

The Effects of Acute GABA Treatment on the Functional Connectivity and Network Topology of Cortical Cultures

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

γ-Aminobutyric acid (GABA) is an inhibitory transmitter, acting on receptor channels to reduce neuronal excitability in matured neural systems. However, electrophysiological responses of whole neuronal ensembles to the exposure to GABA are still unclear. We used micro-electrode arrays (MEAs) to study the effects of the increasing amount of GABA on functional network of cortical neural cultures. Then the recorded data were analyzed by the cross-covariance analysis and graph theory. Results showed that after the GABA treatment, the activity parameters of firing rate, bursting rate, bursting duration and network burst frequency in neural cultures decreased as expected. In addition, the functional connectivity also decreased in similarity, network density, and the size of the largest component. However, small-worldness was not found to be influenced by the acute GABA treatment. Our results support the position that using graph theory to evaluate the functional connectivity of neural cultures may enhance understanding of the pharmacological impact of neurotransmitters on neuronal networks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Gross GW, Williams AN, Lucas JH (1982) Recording of spontaneous activity with photoetched microelectrode surfaces from mouse spinal neurons in culture. J Neurosci Methods 5(1–2):13–22

    Article  CAS  PubMed  Google Scholar 

  2. Potter SM, DeMarse TB (2001) A new approach to neural cell culture for long-term studies. J Neurosci Methods 110(1–2):17–24

    Article  CAS  PubMed  Google Scholar 

  3. Gramowski A, Jugelt K, Weiss DG, Gross GW (2004) Substance identification by quantitative characterization of oscillatory activity in murine spinal cord networks on microelectrode arrays. Eur J Neurosci 19(10):2815–2825

    Article  PubMed  Google Scholar 

  4. Streit J (1993) Regular oscillations of synaptic activity in spinal networks in vitro. J Neurophysiol 70(3):871–878

    CAS  PubMed  Google Scholar 

  5. Gramowski A, Schiffmann D, Gross GW (2000) Quantification of acute neurotoxic effects of trimethyltin using neuronal networks cultured on microelectrode arrays. Neurotoxicology 21(3):331–342

    CAS  PubMed  Google Scholar 

  6. Martinoia S, Bonzano L, Chiappalone M, Tedesco M, Marcoli M, Maura G (2005) in vitro cortical neuronal networks as a new high-sensitive system for biosensing applications. Biosens Bioelectron 20(10):2071–2078

    Article  CAS  PubMed  Google Scholar 

  7. Gross GW, Harsch A, Rhoades BK, Gopel W (1997) Odor, drug and toxin analysis with neuronal networks in vitro: extracellular array recording of network responses. Biosens Bioelectron 12(5):373–393

    Article  CAS  PubMed  Google Scholar 

  8. Morefield SI, Keefer EW, Chapman KD, Gross GW (2000) Drug evaluations using neuronal networks cultured on microelectrode arrays. Biosens Bioelectron 15(7–8):383–396

    Article  CAS  PubMed  Google Scholar 

  9. Keefer EW, Norton SJ, Boyle NA, Talesa V, Gross GW (2001) Acute toxicity screening of novel AChE inhibitors using neuronal networks on microelectrode arrays. Neurotoxicology 22(1):3–12

    Article  CAS  PubMed  Google Scholar 

  10. Xia Y, Gross GW (2003) Histiotypic electrophysiological responses of cultured neuronal networks to ethanol. Alcohol 30(3):167–174

    Article  CAS  PubMed  Google Scholar 

  11. Parviz M, Gross GW (2007) Quantification of zinc toxicity using neuronal networks on microelectrode arrays. Neurotoxicology 28(3):520–531

    Article  CAS  PubMed  Google Scholar 

  12. Gross GW, Rhoades BK, Azzazy HM, Wu MC (1995) The use of neuronal networks on multielectrode arrays as biosensors. Biosens Bioelectron 10(6–7):553–567

    Article  CAS  PubMed  Google Scholar 

  13. Leinekugel X, Khazipov R, Cannon R, Hirase H, Ben-Ari Y, Buzsaki G (2002) Correlated bursts of activity in the neonatal hippocampus in vivo. Science 296(5575):2049–2052

    Article  CAS  PubMed  Google Scholar 

  14. Khazipov R, Esclapez M, Caillard O, Bernard C, Khalilov I, Tyzio R, Hirsch J, Dzhala V, Berger B, Ben-Ari Y (2001) Early development of neuronal activity in the primate hippocampus in utero. J Neurosci 21(24):9770–9781

    CAS  PubMed  Google Scholar 

  15. Marom S, Shahaf G (2002) Development, learning and memory in large random networks of cortical neurons: lessons beyond anatomy. Q Rev Biophys 35(1):63–87

    Article  PubMed  Google Scholar 

  16. Harris KD, Csicsvari J, Hirase H, Dragoi G, Buzsaki G (2003) Organization of cell assemblies in the hippocampus. Nature 424(6948):552–556

    Article  CAS  PubMed  Google Scholar 

  17. Morin FO, Takamura Y, Tamiya E (2005) Investigating neuronal activity with planar microelectrode arrays: achievements and new perspectives. J Biosci Bioeng 100(2):131–143

    Article  CAS  PubMed  Google Scholar 

  18. Tateno T, Kawana A, Jimbo Y (2002) Analytical characterization of spontaneous firing in networks of developing rat cultured cortical neurons. Phys Rev E Stat Nonlin Soft Matter Phys 65(5 Pt 1):051924

    Article  PubMed  Google Scholar 

  19. Wagenaar DA, Pine J, Potter SM (2006) An extremely rich repertoire of bursting patterns during the development of cortical cultures. BMC Neurosci 7:11

    Article  PubMed  PubMed Central  Google Scholar 

  20. Beggs JM, Plenz D (2004) Neuronal avalanches are diverse and precise activity patterns that are stable for many hours in cortical slice cultures. J Neurosci 24(22):5216–5229

    Article  CAS  PubMed  Google Scholar 

  21. Chiappalone M, Vato A, Berdondini L, Koudelka-Hep M, Martinoia S (2007) Network dynamics and synchronous activity in cultured cortical neurons. Int J Neural Syst 17(2):87–103

    Article  PubMed  Google Scholar 

  22. Segev R, Baruchi I, Hulata E, Ben-Jacob E (2004) Hidden neuronal correlations in cultured networks. Physical Rev Lett 92(11):118102

    Article  Google Scholar 

  23. Baruchi I, Ben-Jacob E (2007) Towards neuro-memory-chip: imprinting multiple memories in cultured neural networks. Phys Rev E Stat Nonlin Soft Matter Phys 75(5 Pt 1):050901

    Article  PubMed  Google Scholar 

  24. Raichman N, Ben-Jacob E (2008) Identifying repeating motifs in the activation of synchronized bursts in cultured neuronal networks. J Neurosci Methods 170(1):96–110

    Article  PubMed  Google Scholar 

  25. Rubinov M, Sporns O (2010) Complex network measures of brain connectivity: uses and interpretations. Neuroimage 52(3):1059–1069

    Article  PubMed  Google Scholar 

  26. Srinivas KV, Jain R, Saurav S, Sikdar SK (2007) Small-world network topology of hippocampal neuronal network is lost, in an in vitro glutamate injury model of epilepsy. Eur J Neurosci 25(11):3276–3286

    Article  PubMed  Google Scholar 

  27. Downes JH, Hammond MW, Xydas D, Spencer MC, Becerra VM, Warwick K, Whalley BJ, Nasuto SJ (2012) Emergence of a small-world functional network in cultured neurons. PLoS Comput Biol 8(5):e1002522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Vincent K, Tauskela JS, Mealing GA, Thivierge JP (2013) Altered network communication following a neuroprotective drug treatment. PLoS ONE 8(1):e54478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Schroeter MS, Charlesworth P, Kitzbichler MG, Paulsen O, Bullmore ET (2015) Emergence of rich-club topology and coordinated dynamics in development of hippocampal functional networks in vitro. J Neurosci 35(14):5459–5470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Bettencourt LM, Stephens GJ, Ham MI, Gross GW (2007) Functional structure of cortical neuronal networks grown in vitro. Phys Rev E Stat Nonlin Soft Matter Phys 75(2 Pt 1):021915

    Article  PubMed  Google Scholar 

  31. Szabo TM, Caplan JS, Zoran MJ (2010) Serotonin regulates electrical coupling via modulation of extrajunctional conductance: H-current. Brain Res 1349:21–31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hogberg HT, Sobanski T, Novellino A, Whelan M, Weiss DG, Bal-Price AK (2011) Application of micro-electrode arrays (MEAs) as an emerging technology for developmental neurotoxicity: evaluation of domoic acid-induced effects in primary cultures of rat cortical neurons. Neurotoxicology 32(1):158–168

    Article  CAS  PubMed  Google Scholar 

  33. Schmidt SL, Chew EY, Bennett DV, Hammad MA, Frohlich F (2013) Differential effects of cholinergic and noradrenergic neuromodulation on spontaneous cortical network dynamics. Neuropharmacology 72:259–273

    Article  CAS  PubMed  Google Scholar 

  34. Tang-Schomer MD, Davies P, Graziano D, Thurber AE, Kaplan DL (2014) Neural circuits with long-distance axon tracts for determining functional connectivity. J Neurosci Methods 222:82–90

    Article  PubMed  Google Scholar 

  35. Defranchi E, Novellino A, Whelan M, Vogel S, Ramirez T, van Ravenzwaay B, Landsiedel R (2011) Feasibility assessment of micro-electrode chip assay as a method of detecting neurotoxicity in vitro. Front Neuroeng 4:6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Tang R, Pei W, Chen S, Zhao H, Chen Y, Han Y, Wang C, Chen H (2014) Fabrication of strongly adherent platinum black coatings on microelectrodes array. Sci China. Inf Sci 57(4):1–10

    Article  Google Scholar 

  37. Yao H, Rongyu T, Jin Z, Qiuxia L, Zhiqiang L, Weizhen C, Cuimi D, Chunlan W, Changyong W (2012) The design and fabrication of microelectrode array (MEA) and multichannel electrophysiology system. J Biomed Eng Res 31(04):214–219

    Google Scholar 

  38. Chiappalone M, Novellino A, Vajda I, Vato A, Martinoia S, van Pelt J (2005) Burst detection algorithms for the analysis of spatio-temporal patterns in cortical networks of neurons. Neurocomputing 65–66 (0):653–662

    Article  Google Scholar 

  39. Wagenaar DA, DeMarse TB, Potter SM (2005) MeaBench: A toolset for multielectrode data acquisition and on-line analysis. Proc 2nd Int IEEE EMBS Conf Neural Eng, Arlington

  40. Aertsen AM, Gerstein GL (1985) Evaluation of neuronal connectivity: sensitivity of cross-correlation. Brain Res 340(2):341–354

    Article  CAS  PubMed  Google Scholar 

  41. Sun JJ, Kilb W, Luhmann HJ (2010) Self-organization of repetitive spike patterns in developing neuronal networks in vitro. Eur J Neurosci 32(8):1289–1299

    Article  PubMed  Google Scholar 

  42. Maccione A, Garofalo M, Nieus T, Tedesco M, Berdondini L, Martinoia S (2012) Multiscale functional connectivity estimation on low-density neuronal cultures recorded by high-density CMOS micro electrode arrays. J Neurosci Methods 207(2):161–171

    Article  PubMed  Google Scholar 

  43. de la Rocha J, Doiron B, Shea-Brown E, Josic K, Reyes A (2007) Correlation between neural spike trains increases with firing rate. Nature 448(7155):802–806

    Article  PubMed  Google Scholar 

  44. Humphries MD, Gurney K (2008) Network ‘small-world-ness’: a quantitative method for determining canonical network equivalence. PLoS ONE 3(4):e0002051

    Article  PubMed  Google Scholar 

  45. Watts DJ, Strogatz SH (1998) Collective dynamics of ‘small-world’ networks. Nature 393(6684):440–442

    Article  CAS  PubMed  Google Scholar 

  46. Jimbo Y, Robinson HP, Kawana A (1998) Strengthening of synchronized activity by tetanic stimulation in cortical cultures: application of planar electrode arrays. IEEE Trans Biomed Eng 45(11):1297–1304

    Article  CAS  PubMed  Google Scholar 

  47. Jimbo Y, Tateno T, Robinson HP (1999) Simultaneous induction of pathway-specific potentiation and depression in networks of cortical neurons. Biophys J 76(2):670–678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Tang R, Zhang G, Weng X, Han Y, Lang Y, Zhao Y, Zhao X, Wang K, Lin Q, Wang C (2016) In vitro assessment reveals parameters-dependent modulation on excitability and functional connectivity of cerebellar slice by repetitive transcranial magnetic stimulation. Sci Rep 6:23420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Teller S, Tahirbegi IB, Mir M, Samitier J, Soriano J (2015) Magnetite-Amyloid-beta deteriorates activity and functional organization in an in vitro model for Alzheimer’s disease. Sci Rep 5:17261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Wang XJ, Kennedy H (2016) Brain structure and dynamics across scales: in search of rules. Curr Opin Neurobiol 37:92–98

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Ypma RJ, Bullmore ET (2016) Statistical analysis of tract-tracing experiments demonstrates a dense, complex cortical network in the mouse. PLoS Comput Biol 12(9):e1005104

    Article  PubMed  PubMed Central  Google Scholar 

  52. van den Heuvel MP, Kahn RS, Goni J, Sporns O (2012) High-cost, high-capacity backbone for global brain communication. Proc Natl Acad Sci USA 109(28):11372–11377

    Article  PubMed  PubMed Central  Google Scholar 

  53. van den Heuvel MP, Sporns O (2011) Rich-club organization of the human connectome. J Neurosci 31(44):15775–15786

    Article  PubMed  Google Scholar 

  54. Rubenstein JL, Merzenich MM (2003) Model of autism: increased ratio of excitation/inhibition in key neural systems. Genes Brain Behavior 2(5):255–267

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank CL Wang for cell culturing. Dr. Duan Qing is highly appreciated for his hardworking efforts in editing the paper, including help with syntax, grammar, and word usage.

Funding

This study is supported by the National Key Research and Development Program of China (No.2016YFC1101303), International Cooperation and Exchange of the National Natural Science Foundation of China (No. 31320103914) and National Natural Science Funds for Outstanding Young Scholar (No. 81622027).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jin Zhou or Changyong Wang.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, Y., Li, H., Lang, Y. et al. The Effects of Acute GABA Treatment on the Functional Connectivity and Network Topology of Cortical Cultures. Neurochem Res 42, 1394–1402 (2017). https://doi.org/10.1007/s11064-017-2190-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-017-2190-3

Keywords

Navigation